Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The types of bacteria that cause bacterial meningitis vary according to the infected individual's age group.
- In premature babies and newborns up to three months old, common causes are "group B streptococci" (subtypes III which normally inhabit the vagina and are mainly a cause during the first week of life) and bacteria that normally inhabit the digestive tract such as "Escherichia coli" (carrying the K1 antigen). "Listeria monocytogenes" (serotype IVb) is transmitted by the mother before birth and may cause meningitis in the newborn.
- Older children are more commonly affected by "Neisseria meningitidis" (meningococcus) and "Streptococcus pneumoniae" (serotypes 6, 9, 14, 18 and 23) and those under five by "Haemophilus influenzae" type B (in countries that do not offer vaccination).
- In adults, "Neisseria meningitidis" and "Streptococcus pneumoniae" together cause 80% of bacterial meningitis cases. Risk of infection with "Listeria monocytogenes" is increased in persons over 50 years old. The introduction of pneumococcal vaccine has lowered rates of pneumococcal meningitis in both children and adults.
Recent skull trauma potentially allows nasal cavity bacteria to enter the meningeal space. Similarly, devices in the brain and meninges, such as cerebral shunts, extraventricular drains or Ommaya reservoirs, carry an increased risk of meningitis. In these cases, the persons are more likely to be infected with Staphylococci, Pseudomonas, and other Gram-negative bacteria. These pathogens are also associated with meningitis in people with an impaired immune system. An infection in the head and neck area, such as otitis media or mastoiditis, can lead to meningitis in a small proportion of people. Recipients of cochlear implants for hearing loss are more at risk for pneumococcal meningitis.
Tuberculous meningitis, which is meningitis caused by "Mycobacterium tuberculosis", is more common in people from countries in which tuberculosis is endemic, but is also encountered in persons with immune problems, such as AIDS.
Recurrent bacterial meningitis may be caused by persisting anatomical defects, either congenital or acquired, or by disorders of the immune system. Anatomical defects allow continuity between the external environment and the nervous system. The most common cause of recurrent meningitis is a skull fracture, particularly fractures that affect the base of the skull or extend towards the sinuses and petrous pyramids. Approximately 59% of recurrent meningitis cases are due to such anatomical abnormalities, 36% are due to immune deficiencies (such as complement deficiency, which predisposes especially to recurrent meningococcal meningitis), and 5% are due to ongoing infections in areas adjacent to the meninges.
Meningitis is typically caused by an infection with microorganisms. Most infections are due to viruses, with bacteria, fungi, and protozoa being the next most common causes. It may also result from various non-infectious causes. The term "aseptic meningitis" refers to cases of meningitis in which no bacterial infection can be demonstrated. This type of meningitis is usually caused by viruses but it may be due to bacterial infection that has already been partially treated, when bacteria disappear from the meninges, or pathogens infect a space adjacent to the meninges (e.g. sinusitis). Endocarditis (an infection of the heart valves which spreads small clusters of bacteria through the bloodstream) may cause aseptic meningitis. Aseptic meningitis may also result from infection with spirochetes, a type of bacteria that includes "Treponema pallidum" (the cause of syphilis) and "Borrelia burgdorferi" (known for causing Lyme disease). Meningitis may be encountered in cerebral malaria (malaria infecting the brain) or amoebic meningitis, meningitis due to infection with amoebae such as "Naegleria fowleri", contracted from freshwater sources.
Late-onset meningitis is most likely infection from the community. Late onset meningitis may be caused by other Gram-negative bacteria and "staphylococcal" species. In developing countries "Streptococcus pneumoniae" accounts for most cases of late onset.
Survivors of "Haemophilus" meningitis may experience permanent damage caused by inflammation around the brain, mostly involving neurological disorders. Long-term complications include brain damage, hearing loss, and mental retardation. Other possible long-term effects are reduced IQ, cerebral palsy, and the development of seizures. Children that survive the disease are more often held back in school, and are more likely to require special education services. Negative long-term effects are more likely in subjects whose treatments were delayed, as well as in subjects who were given antibiotics to which the bacteria was resistant. Ten percent of survivors develop epilepsy, while close to twenty percent of survivors develop hearing loss ranging from mild loss to deafness. About 45% of survivors experience no negative long-term effects.
In early-onset neonatal meningitis, acquisition of the bacteria is from the mother before the baby is born or during birth. The most common bacteria found in early-onset are group B "Streptococcus" (GBS), "Escherichia coli", and "Listeria monocytogenes". In developing countries, Gram-negative enteric (gut) bacteria are responsible for the majority of early onset meningitis.
There are several risk factors that increase the likelihood of developing bacteremia from any type of bacteria. These include:
- HIV infection
- Diabetes Mellitus
- Chronic hemodialysis
- Solid organ transplant
- Stem cell transplant
- Treatment with glucocorticoids
- Liver failure
Individuals with a weak immune system are most at risk. This includes individuals taking immunosuppressive medication, cancer patients, HIV patients, premature babies with very low birth weight, the elderly, etc.
People who are at an increased risk of acquiring particular fungal infections in general may also be at an increased risk of developing fungal meningitis, as the infection may in some cases spread to the CNS. People residing in the Midwestern United States, and Southwestern United States and Mexico are at an increased risk of infection with "Histoplasma" and "Coccidioides", respectively.
Fungi and parasites may also cause the disease. Fungi and parasites are especially associated with immunocompromised patients. Other causes include: "Nocardia asteroides", "Mycobacterium", Fungi (e.g. "Aspergillus", "Candida", "Cryptococcus", "Mucorales", "Coccidioides", "Histoplasma capsulatum", "Blastomyces dermatitidis", "Bipolaris", "Exophiala dermatitidis", "Curvularia pallescens", "Ochroconis gallopava", "Ramichloridium mackenziei", "Pseudallescheria boydii"), Protozoa (e.g. "Toxoplasma gondii", "Entamoeba histolytica", "Trypanosoma cruzi", "Schistosoma", "Paragonimus"), and Helminths (e.g. "Taenia solium"). Organisms that are most frequently associated with brain abscess in patients with AIDS are poliovirus, "Toxoplasma gondii", and "Cryptococcus neoformans", though in infection with the latter organism, symptoms of meningitis generally predominate.
These organisms are associated with certain predisposing conditions:
- Sinus and dental infections—Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. "Prevotella", "Porphyromonas", "Bacteroides"), "Fusobacterium", "S. aureus", and Enterobacteriaceae
- Penetrating trauma—"S. aureus", aerobic streptococci, Enterobacteriaceae, and "Clostridium" spp.
- Pulmonary infections—Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. "Prevotella", "Porphyromonas", "Bacteroides"), "Fusobacterium", "Actinomyces", and "Nocardia"
- Congenital heart disease—Aerobic and microaerophilic streptococci, and "S. aureus"
- HIV infection—"T. gondii", "Mycobacterium", "Nocardia", "Cryptococcus", and "Listeria monocytogenes"
- Transplantation—"Aspergillus", "Candida", "Cryptococcus", "Mucorales", "Nocardia", and "T. gondii"
- Neutropenia—Aerobic gram-negative bacilli, "Aspergillus", "Candida", and "Mucorales"
Gram negative bacterial species are responsible for approximately 24% of all cases of healthcare-associated bacteremia and 45% of all cases of community-acquired bacteremia. In general, gram negative bacteria enter the bloodstream from infections in the respiratory tract, genitourinary tract, gastrointestinal tract, or hepatobiliary system. Gram-negative bacteremia occurs more frequently in elderly populations (65 years or older) and is associated with higher morbidity and mortality in this population.
"E.coli" is the most common cause of community-acquired bacteremia accounting for approximately 75% of cases. E.coli bacteremia is usually the result of a urinary tract infection. Other organisms that can cause community-acquired bacteremia include "pseudomonas aeruginosa", "klebsiella pneumoniae", and "proteus mirabilis". "Salmonella" infection, despite mainly only resulting in gastroenteritis in the developed world, is a common cause of bacteremia in Africa. It principally affects children who lack antibodies to Salmonella and HIV+ patients of all ages.
Among healthcare-associated cases of bacteremia, gram negative organisms are an important cause of bacteremia in the ICU. Catheters in the veins, arteries, or urinary tract can all create a way for gram negative bacteria to enter the bloodstream. Surgical procedures of the genitourinary tract, intestinal tract, or hepatobiliary tract can also lead to gram negative bacteremia. "Pseudomonas" and "enterobacter" species are the most important causes of gram negative bacteremia in the ICU.
Death occurs in about 10% of cases and people do well about 70% of the time. This is a large improvement from the 1960s due to improved ability to image the head, better neurosurgery and better antibiotics.
Bacterial infections of the orbit have long been associated with a risk of catastrophic local
sequelae and intracranial spread.
The natural course of the disease, as documented by Gamble (1933), in the pre-antibiotic era,
resulted in death in 17% of patients and permanent blindness in 20%.
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
While the "Haemophilus influenzae" bacteria is unable to survive in any environment outside of the human body, humans can carry the bacteria within their bodies without developing any symptoms of the disease. It spreads through the air when an individual carrying the bacteria coughs or sneezes. The risk of developing "Haemophilus" meningitis is most directly related to an individual's vaccination history, as well as the vaccination history of the general public. Herd immunity, or the protection that unvaccinated individuals experience when the majority of others in their proximity are vaccinated, does help in the reduction of meningitis cases, but it does not guarantee protection from the disease. Contact with other individuals with the disease also vastly increases the risk of infection. A child in the presence of family members sick with "Haemophilus" meningitis or carrying the bacteria is 585 times more likely to catch "Haemophilus" meningitis. Additionally, siblings of individuals with the Haemophilus influenzae meningitis receive reduced benefits from certain types of immunization. Similarly, children under two years of age have a greater risk of contracting the disease when attending day care, especially in their first month of attendance, due to the maintained contact with other children who might be asymptomatic carriers of the Hib bacteria.
The treatment of TB meningitis is isoniazid, rifampicin, pyrazinamide and ethambutol for two months, followed by isoniazid and rifampicin alone for a further ten months. Steroids help reduce the risk of death in those without HIV. Steroids can be used in the first six weeks of treatment, A few people may require immunomodulatory agents such as thalidomide. Hydrocephalus occurs as a complication in about a third of people with TB meningitis. The addition of aspirin may reduce or delay mortality, possibly by reducing complications such as infarcts.
The disease is associated with high rates of mortality and severe morbidity.
Aseptic meningitis, or sterile meningitis, is a condition in which the layers lining the brain, the meninges, become inflamed and a pyogenic bacterial source is not to blame. Meningitis is diagnosed on a history of characteristic symptoms and certain examination findings (e.g., Kernig's sign). Investigations should show an increase in the number of leukocytes present in the cerebrospinal fluid (CSF) obtained via lumbar puncture (normally being fewer than five visible leukocytes per microscopic high-power field).
The term "aseptic" is frequently a misnomer, implying a lack of infection. On the contrary, many cases of aseptic meningitis represent infection with viruses or mycobacteria that cannot be detected with routine methods. While the advent of polymerase chain reaction has increased the ability of clinicians to detect viruses such as enterovirus, cytomegalovirus, and herpes virus in the CSF, many viruses can still escape detection. Additionally, mycobacteria frequently require special stains and culture methods that make their detection difficult. When CSF findings are consistent with meningitis, and microbiologic testing is unrevealing, clinicians typically assign the diagnosis of aseptic meningitis—making it a relative diagnosis of exclusion.
Aseptic meningitis can result from non-infectious causes as well. it can be a relatively infrequent side effect of medications, or be a result of an autoimmune disease. There is no formal classification system of aseptic meningitis except to state the underlying cause, if known. The absence of bacteria found in the spinal fluid upon spinal tap, either through microscopic examination or by culture, usually differentiates aseptic meningitis from its pyogenic counterpart.
"Aseptic meningitis", like non-gonococcal urethritis, non-Hodgkin lymphoma and atypical pneumonia, merely states what the condition is not, rather than what it is. Terms such as viral meningitis, bacterial meningitis, fungal meningitis, neoplastic meningitis and drug-induced aseptic meningitis can provide more information about the condition, and without using one of these more specific terms, it is difficult to describe treatment options or prognosis.
Complications include hearing loss, blood infection, meningitis, cavernous sinus thrombosis, and optic nerve damage (which could lead to blindness).
When properly diagnosed, the mortality of Lemierre's syndrome is about 4.6%. Since this disease is not well known and often remains undiagnosed, mortality might be much higher.
Ameobic pathogens exist as free-living protozoans. Nevertheless, these pathogens cause rare and uncommon CNS infections. N. fowleri produces primary amebic meningoencephalitis (PAM). The symptoms of PAM are indistinguishable from acute bacterial meningitis. Other amebae cause granulomatous amebic encephalitis (GAE), which is a more subacute and can even a non-symptomatic chronic infection. Ameobic meningoencephalitis can mimic a brain abscess, aseptic or chronic meningitis, or CNS malignancy.
The risk factors associated with BPF are not well known. However, it has been suggested that children under 5 years of age are more susceptible to BPF since they lack serum bactericidal activity against the infection. Older children and adults have much higher titers of bactericidal antibodies, which serve as a protective measure. Also children residing in warmer geographic areas have been associated with a higher risk of BPF infection.
In the western world, GBS (in the absence of effective prevention measures) is the main cause of bacterial infections in newborns, such as septicemia, pneumonia, and meningitis, which can lead to death or long-term after effects.
GBS infections in newborns are separated into two clinical types, early-onset disease (GBS-EOD) and late-onset disease (GBS-LOD). GBS-EOD manifests from 0 to 7 living days in the newborn, most of the cases of EOD being apparent within 24 h from birth. GBS-LOD starts between 7 and 90 days after birth.
The most common clinical syndromes of GBS-EOD are septicemia without apparent location, pneumonia, and less frequently meningitis. Bacteremia without a focus occurs in 80-85%, pneumonia in 10-15%, and meningitis in 5-10% of cases. The initial clinical findings are respiratory signs in more than 80% of cases. Neonates with meningitis often have an initial clinical presentation identical to presentation in those without meningeal affectation. An exam of the cerebrospinal fluid is often necessary to rule out meningitis.
Colonization with GBS during labour is the primary risk factor for the development of GBS-EOD. GBS-EOD is acquired vertically (vertical transmission), through exposure of the fetus or the baby to GBS from the vagina of a colonized woman, either "in utero" (because of ascending infection) or during birth, after rupture of membranes. Infants can also be infected during passage through the birth canal, nevertheless, newborns who acquire GBS through this route can only become colonized, and these colonized infants usually do not develop GBS-EOD.
Roughly 50% of newborns of GBS colonized mothers are also GBS colonized and (without prevention measures) 1-2% of these newborns will develop GBS-EOD.
In the past, the incidence of GBS-EOD ranged from 0.7 to 3.7 per thousand live births in the US, and from 0.2 to 3.25 per thousand in Europe.
In 2008, after widespread use of antenatal screening and intrapartum antibiotic prophylaxis, the Centers for Disease Control and Prevention of United States reported an incidence of 0.28 cases of GBS-EOD per thousand live births in the US.
Though maternal GBS colonization is the key determinant for GBS-EOD, other factors also increase the risk. These factors are:
- Onset of labour before 37 weeks of gestation (premature birth)
- Prolonged rupture of membranes (longer duration of membrane rupture) (≥18 h before delivery)
- Intrapartum (during childbirth) fever (>38 °C, >100.4 °F)
- Amniotic infections (chorioamnionitis)
- Young maternal age
Nevertheless, most babies who develop GBS-EOD are born to colonized mothers without any of these risk factors. Heavy GBS vaginal colonization is also associated with a higher risk for GBS-EOD. Women who had one of these risk factors but who are not GBS colonized at labour are at low risk for GBS-EOD compared to women who were colonized prenatally, but had none of the aforementioned risk factors.
Presence of low levels of anticapsular antibodies against GBS in the mother are also of great importance for the development of GBS-EOD.
Because of that, a previous sibling with GBS-EOD is also an important risk factor for the development of the infection in subsequent deliveries, probably reflecting the lack of protective antibodies in the mother.
Overall, the case fatality rates from GBS-EOD have declined, from 50% observed in studies from the 1970s to between 2 and 10% in recent years, mainly as a consequence of improvements in therapy and management. Fatal neonatal infections by GBS are more frequent among premature infants.
GBS-LOD affects infants from 7 days to 3 months of age and has a lower case fatality rate (1%-6%) than GBS-EOD. Clinical syndromes of GBS-EOD are bacteremia without a focus (65%), meningitis (25%), cellulitis, osteoarthritis, and pneumonia.
Prematurity has been reported to be the main risk factor. Each week of decreasing gestation increases the risk by a factor of 1.34 for developing GBS-LOD.
GBS-LOD is not acquired through vertical transmission during delivery; it can be acquired later from the mother from breast milk or from environmental and community sources.
GBS-LOD commonly shows nonspecific signs, and diagnosis should be made obtaining blood cultures in febrile newborns. Hearing loss and mental impairment can be a long-term consequence of GBS meningitis.
Persons with component deficiencies in the final common complement pathway (C3,C5-C9) are more susceptible to "N. meningitidis" infection than complement-satisfactory persons, and it was estimated that the risk of infection is 7000 times higher in such individuals. In addition, complement component-deficient populations frequently experience frequent meningococcal disease since their immune response to natural infection may be less complete than that of complement non-deficient persons.
Inherited properdin deficiency also is related, with an increased risk of contracting meningococcal disease. Persons with functional or anatomic asplenia may not efficiently clear encapsulated "Neisseria meningitidis" from the bloodstream Persons with other conditions associated with immunosuppression also may be at increased risk of developing meningococcal disease.
Multiple species of bacteria can be associated with the condition:
- Meningococcus is another term for the bacterial species "Neisseria meningitidis"; blood infection with said species usually underlies WFS. While many infectious agents can infect the adrenals, an acute, selective infection is usually meningococcus.
- "Pseudomonas aeruginosa" can also cause WFS.
- WFS can also be caused by "Streptococcus pneumoniae" infections, a common bacterial pathogen typically associated with meningitis in the adult and elderly population.
- "Mycobacterium tuberculosis" could also cause WFS. Tubercular invasion of the adrenal glands could cause hemorrhagic destruction of the glands and cause mineralocorticoid deficiency.
- "Staphylococcus aureus" has recently also been implicated in pediatric WFS.
- It can also be associated with "Haemophilus influenzae".
Viruses may also be implicated in adrenal problems:
- Cytomegalovirus can cause adrenal insufficiency, especially in the immunocompromised.
- Ebola virus infection may also cause similar acute adrenal failure.
The bacteria causing the thrombophlebitis are anaerobic bacteria that are typically normal components of the microorganisms that inhabit the mouth and throat. Species of "Fusobacterium", specifically "Fusobacterium necrophorum", are most commonly the causative bacteria, but various bacteria have been implicated. One 1989 study found that 81% of Lemierres's syndrome had been infected with "Fusobacterium necrophorum", while 11% were caused by other Fusobacterium species. MRSA might also be an issue in Lemierre infections. Rarely Lemierre's syndrome is caused by other (usually Gram-negative) bacteria, which include "Bacteroides fragilis" and "Bacteroides melaninogenicus", "Peptostreptococcus spp.", "Streptococcus microaerophile", "Staphylococcus aureus", "Streptococcus pyogenes", and "Eikenella corrodens".
"S. pneumoniae" is normally found in the nose and throat of 5–10% of healthy adults and 20–40% of healthy children. It can be found in higher amounts in certain environments, especially those where people are spending a great deal of time in close proximity to each other (day-care centers, military barracks). It attaches to nasopharyngeal cells through interaction of bacterial surface adhesins. This normal colonization can become infectious if the organisms are carried into areas such as the Eustachian tube or nasal sinuses where it can cause otitis media and sinusitis, respectively. Pneumonia occurs if the organisms are inhaled into the lungs and not cleared (again, viral infection, or smoking-induced ciliary paralysis might be contributing factors). The organism's polysaccharide capsule makes it resistant to phagocytosis and if there is no pre-existing anticapsular antibody alveolar macrophages cannot adequately kill the pneumococci. The organism spreads to the blood stream (where it can cause bacteremia) and is carried to the meninges, joint spaces, bones, and peritoneal cavity, and may result in meningitis, brain abscess, septic arthritis, or osteomyelitis.
"S. pneumoniae" has several virulence factors, including the polysaccharide capsule mentioned earlier, that help it evade a host's immune system. It has pneumococcal surface proteins that inhibit complement-mediated opsonization, and it secretes IgA1 protease that will destroy secretory IgA produced by the body and mediates its attachment to respiratory mucosa.
The risk of pneumococcal infection is much increased in persons with impaired IgG synthesis, impaired phagocytosis, or defective clearance of pneumococci. In particular, the absence of a functional spleen, through congenital asplenia, surgical removal of the spleen, or sickle-cell disease predisposes one to a more severe course of infection (overwhelming post-splenectomy infection) and prevention measures are indicated (see asplenia).
People with a compromised immune system, such as those living with HIV, are also at higher risk of pneumococcal disease. In HIV patients with access to treatment, the risk of invasive pneumoccal disease is 0.2–1% per year and has a fatality rate of 8%.
There is an association between pneumococcal pneumonia and influenza. Damage to the lining of the airways (respiratory epithelium) and upper respiratory system caused by influenza may facilitate pneumococcal entry and infection.
Other risk factors include smoking, injection drug use, Hepatitis C, and COPD.