Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Basilar invagination can be present at birth. If the condition develops after birth, it is usually the result of injury or diseases. If due to injury, about half the time it is caused by vehicle or bicycle accidents; 25% of the time by falls and 10% of the time by recreational activities such as diving accidents.
It also occurs in patients with bone diseases, such as osteomalacia, rheumatoid arthritis, Paget's disease, Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta.
If there aren't neurological symptoms (such as difficulties moving, loss of sensation, confusion, etc.) and there is no evidence of pressure on the spinal cord, a conservative approach may be taken such as:
- Drugs, such as aspirin, without steroids to relieve inflammation
- Cervical traction, in which the neck is pulled along its length, thus relieving pressure on the spinal cord
- Using a neck collar or cervical-thoracic suit
If there is pressure on the spinal cord or life-threatening symptoms are present, surgery is recommended.
Most commonly caused by hypertension, continued stress on the walls of the artery will degrade the vessel wall by damaging and loosening the collagen and elastin meshwork which comprises the intima. Similarly, hypercholesterolemia or hyperlipidemia can also provide sufficient trauma to the vessel wall resulting in dolichoectasia. As the arrangement of connective tissue is disturbed, the vessel wall is no longer able to hold its original conformation and begins to unravel due to the continued hypertension. High blood pressure mold and force the artery to now take on an elongated, tortuous course to better withstand the higher pressures.
Most commonly affected is the Vertebral Basilar Artery (Vertebral Basilar Dolichoectasia or Vertebrobasillar Dolichoectasia). The Internal Carotid Artery is also at high risk to be affected. Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) are more likely to be subject to dolichoectasias. Dolichoectasias are most common in elderly males.
In cases involving the basilar artery (VBD), the pathogenesis arises from direct compression of different cranial nerves. Additionally, ischemic effects on the brain stem and cerebellar hemispheres as well as symptoms related to hydrocephalus are common. Direct cranial nerve compression can lead to isolated cranial nerve dysfunction, usually associated with a normal-sized basilar artery that is tortuous and elongated. Cranial nerve dysfunction most commonly involves the VII cranial nerve and the V cranial nerve. Multiple cranial nerve dysfunction is far more likely to occur if there is dilation (ectasia) associated with a tortuous and elongated basilar artery. Cranial nerves affected in descending order of frequency include: VII, V, III, VIII, and VI.
Internal Carotid Artery dolichoectasia is particularly interesting because the artery normally already contains one hairpin turn. Seen in an MRI as two individual arteries at this hairpin, a carotid artery dolichoectasia can progress so far as to produce a second hairpin turn and appear as three individual arteries on an MRI. In the case of a dolichoectasia of the Internal Carotid Artery (ICD), the pathogenesis is primarily related to compression of the Optic Nerves at the Optic Chiasma (see Fig. 1 and 2).
Foville's syndrome is caused by the blockage of the perforating branches of the basilar artery in the region of the brainstem known as the pons. Most frequently caused by vascular disease or tumors involving the dorsal pons.[3]
Structures affected by the infarct are the PPRF, nuclei of cranial nerves VI and VII, corticospinal tract, medial lemniscus, and the medial longitudinal fasciculus. There's involvement of the fifth to eighth cranial nerves, central sympathetic fibres (Horner syndrome) and horizontal gaze palsy.[3]
Acute injury to the internal carotid artery (carotid dissection, occlusion, pseudoaneurysm formation) may be asymptomatic or result in life-threatening bleeding. They are almost exclusively observed when the carotid canal is fractured, although only a minority of carotid canal fractures result in vascular injury. Involvement of the petrous segment of the carotid canal is associated with a relatively high incidence of carotid injury.
Benedikt syndrome, also called Benedikt's syndrome or paramedian midbrain syndrome, is a rare type of posterior circulation stroke of the brain, with a range of neurological symptoms affecting the midbrain, cerebellum and other related structures.
Medial inferior pontine syndrome is a condition associated with a contralateral hemiplegia.
"Medial inferior pontine syndrome" has been described as equivalent to Foville's syndrome.
Medial pontine syndrome results from occlusion of paramedian branches of the basilar artery.
Benedikt syndrome is caused by a lesion ( infarction, hemorrhage, tumor, or tuberculosis) in the tegmentum of the midbrain and cerebellum. Specifically, the median zone is impaired. It can result from occlusion of the posterior cerebral artery or paramedian penetrating branches of the basilar artery.
Prevalence is estimated to be 0.005%. The age of onset has been found to be under 15 years in 40% of cases while it is between 10 and 14 years in one third of the cases. Females outnumber males, 4 to 1. Only 3% have attacks after age 52.
The precise cause of BFS is unknown, and it is not known if it is a disease of the motor nerves, the muscles, or the neuromuscular junction.
Though twitching is sometimes a symptom of serious diseases such as spinal injury, muscular dystrophy, Lyme disease, Creutzfeldt–Jakob disease (CJD), neurofibromatosis or amyotrophic lateral sclerosis (ALS), causes like over-exertion are more common. Mitsikostas "et al." found that fasciculations "were slightly correlated to the body weight and height and to the anxiety level" in normal subjects.
BFS can also be attributed to long term use of anticholinergics such as diphenhydramine and opiates such as morphine, but the latter case is usually when withdrawal symptoms are present.
Magnesium deficiency can cause both fasciculations and anxiety. A vitamin D deficiency may also cause fasciculations, stemming from reduced ionized calcium in the blood (hypocalcemia).
Recent studies have found an association between widespread fasciculations and/or paresthesias with small fiber neuropathy in up to 82% of cases which have a normal EMG and nerve conduction study.
This produces ipsilateral horizontal gaze palsy and facial nerve palsy and contralateral hemiparesis, hemisensory loss, and internuclear ophthalmoplegia.
Hemotympanum or hematotympanum, refers to the presence of blood in the tympanic cavity of the middle ear. Hemotympanum is often the result of basilar skull fracture.
The prognosis for those suffering from diagnosed benign fasciculation syndrome is generally regarded as being good to excellent. The syndrome causes no known long-term physical damage. Patients may suffer elevated anxiety even after being diagnosed with the benign condition. Such patients are often directed towards professionals who can assist with reductions and understanding of stress/anxiety, or those who can prescribe medication to help keep anxiety under control.
Spontaneous remission has been known to occur, and in cases where anxiety is thought to be a major contributor, symptoms are typically lessened after the underlying anxiety is treated. In a 1993 study by Mayo Clinic, 121 individuals diagnosed with benign fasciculation syndrome were assessed 2–32 years (~7 years average) after diagnosis. Of those patients there were no cases of BFS progressing to a more serious illness, and 50% of the patients reported significant improvement in their symptoms at the time of the follow-up. Only 4% of the patients reported symptoms being worse than those present at the time of their diagnosis.
Raymond Céstan syndrome is caused by blockage of the long circumferential branches of the basilar artery. It was described by Étienne Jacques Marie Raymond Céstan and Louis Jean Chenais. Along with other related syndromes such as Millard-Gubler syndrome, Foville's syndrome, and Weber's syndrome, the description was instrumental in establishing important principles in brain-stem localization.
Heterotopic ossification of varying severity can be caused by surgery or trauma to the hips and legs. About every third patient who has total hip arthroplasty (joint replacement) or a severe fracture of the long bones of the lower leg will develop heterotopic ossification, but is uncommonly symptomatic. Between 50% and 90% of patients who developed heterotopic ossification following a previous hip arthroplasty will develop additional heterotopic ossification.
Heterotopic ossification often develops in patients with traumatic brain or spinal cord injuries, other severe neurologic disorders or severe burns, most commonly around the hips. The mechanism is unknown. This may account for the clinical impression that traumatic brain injuries cause accelerated fracture healing.
There are also rare genetic disorders causing heterotopic ossification such as fibrodysplasia ossificans progressiva (FOP), a condition that causes injured bodily tissues to be replaced by heterotopic bone. Characteristically exhibiting in the big toe at birth, it causes the formation of heterotopic bone throughout the body over the course of the sufferer's life, causing chronic pain and eventually leading to the immobilisation and fusion of most of the skeleton by abnormal growths of bone.
Another rare genetic disorder causing heterotopic ossification is progressive osseous heteroplasia (POH), is a condition characterized by cutaneous or subcutaneous ossification.
Treatment involves removal of the etiologic mass and decompressive craniectomy. Brain herniation can cause severe disability or death. In fact, when herniation is visible on a CT scan, the prognosis for a meaningful recovery of neurological function is poor. The patient may become paralyzed on the same side as the lesion causing the pressure, or damage to parts of the brain caused by herniation may cause paralysis on the side opposite the lesion. Damage to the midbrain, which contains the reticular activating network which regulates consciousness, will result in coma. Damage to the cardio-respiratory centers in the medulla oblongata will cause respiratory arrest and (secondarily) cardiac arrest. Current investigation is underway regarding the use of neuroprotective agents during the prolonged post-traumatic period of brain hypersensitivity associated with the syndrome.
Raccoon eye/eyes (also known in the United Kingdom and Ireland as panda eyes) or periorbital ecchymosis is a sign of basal skull fracture or subgaleal hematoma, a craniotomy that ruptured the meninges, or (rarely) certain cancers. Bilateral hemorrhage occurs when damage at the time of a facial fracture tears the meninges and causes the venous sinuses to bleed into the arachnoid villi and the cranial sinuses. In layman's terms, blood from skull fracture seeps into the soft tissue around the eyes. Raccoon eyes may be accompanied by Battle's sign, an ecchymosis behind the ear. These signs may be the only sign of a skull fracture, as it may not show on an X-ray. They may not appear until up 2–3 days after the injury. It is recommended that the patient not blow their nose, cough vigorously, or strain to prevent further tearing of the meninges.
Raccoon eyes may be bilateral or unilateral. If bilateral, it is highly suggestive of basilar skull fracture, with a positive predictive value of 85%. They are most often associated with fractures of the anterior cranial fossa.
Raccoon eyes may also be a sign of disseminated neuroblastoma or of amyloidosis (multiple myeloma).
Depending on cause, raccoon eyes always require urgent consultation and management, that is surgical (facial fracture or post-craniotomy) or medical (neuroblastoma or amyloidosis).
A basilar skull fracture is a break of a bone in the base of the skull. Symptoms may include bruising behind the ears, bruising around the eyes, or blood behind the ear drum. A cerebrospinal fluid (CSF) leak occurs in about 20% of cases and can result in fluid leaking from the nose or ear. Meningitis is a complication in about 14% of cases. Other complications include cranial nerve or blood vessel injury.
They typically require a significant degree of trauma to occur. The break is of at least one of the following bones: temporal bone, occipital bone, sphenoid bone, frontal bone, or ethmoid bone. They are divided into anterior fossa, middle fossa, and poterior fossa fractures. Facial fractures often also occur. Diagnosis is typically by CT scan.
Treatment is generally based on the injury to structures inside the head. Surgery may be done for a CSF leak that does not stop or an injury to a blood vessel or nerve. Preventative antibiotics are of unclear use. It occurs in about 12% of people with a severe head injury.
Brain herniation is a potentially deadly side effect of very high pressure within the skull that occurs when a part of the brain is squeezed across structures within the skull. The brain can shift across such structures as the falx cerebri, the tentorium cerebelli, and even through the foramen magnum (the hole in the base of the skull through which the spinal cord connects with the brain). Herniation can be caused by a number of factors that cause a mass effect and increase intracranial pressure (ICP): these include traumatic brain injury, intracranial hemorrhage, or brain tumor.
Herniation can also occur in the absence of high ICP when mass lesions such as hematomas occur at the borders of brain compartments. In such cases local pressure is increased at the place where the herniation occurs, but this pressure is not transmitted to the rest of the brain, and therefore does not register as an increase in ICP.
Because herniation puts extreme pressure on parts of the brain and thereby cuts off the blood supply to various parts of the brain, it is often fatal. Therefore, extreme measures are taken in hospital settings to prevent the condition by reducing intracranial pressure, or decompressing (draining) a hematoma which is putting local pressure on a part of the brain.
Weber's syndrome (superior alternating hemiplegia) is a form of stroke characterized by the presence of an ipsilateral oculomotor nerve palsy and contralateral hemiparesis or hemiplegia.
A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It can be caused during an assault with a weapon where the initial blow penetrates the skull and the underlying meninges and, on withdrawal, the weapon lifts the fractured portion of the skull outward. It can also be caused the skull rotating while being struck in a case of blunt force trauma, the skull rotating while striking an inanimate object as in a fall, or it may occur during transfer of a patient after an initial compound head injury.
This lesion is usually unilateral and affects several structures in the midbrain including:
It is caused by midbrain infarction as a result of occlusion of the paramedian branches of the posterior cerebral artery or of basilar bifurcation perforating arteries.
The prevalence of migraine and vertigo is 1.6 times higher in 200 dizziness clinic patients than in 200 age- and sex-matched controls from an orthopaedic clinic. Among the patients with unclassified or idiopathic vertigo, the prevalence of migraine was shown to be elevated. In another study, migraine patients reported 2.5 times more vertigo and also 2.5 more dizzy spells during headache-free periods than the controls.
MAV may occur at any age with a female:male ratio of between 1.5 and 5:1. Familial occurrence is not uncommon. In most patients, migraine headaches begin earlier in life than MAV with years of headache-free periods before MAV manifests.
In a diary study, the 1-month prevalence of MAV was 16%, frequency of MAV was higher and duration longer on days with headache, and MAV was a risk factor for co-morbid anxiety.