Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In some cancers, such as melanoma and colorectal cancer, lymphocytes can migrate into and attack the tumor. This can sometimes lead to regression of the primary tumor.
A low normal to low absolute lymphocyte concentration is associated with increased rates of infection after surgery or trauma.
One basis for low T cell lymphocytes occurs when the human immunodeficiency virus (HIV) infects and destroys T cells (specifically, the CD4 subgroup of T lymphocytes). Without the key defense that these T cells provide, the body becomes susceptible to opportunistic infections that otherwise would not affect healthy people. The extent of HIV progression is typically determined by measuring the percentage of CD4 T cells in the patient's blood – HIV ultimately progresses to acquired immune deficiency syndrome (AIDS). The effects of other viruses or lymphocyte disorders can also often be estimated by counting the numbers of lymphocytes present in the blood.
Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Plasma cells originate in the bone marrow; B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell. Once released into the blood and lymph, these antibody molecules bind to the target antigen (foreign substance) and initiate its neutralization or destruction.
Memory B cells are a B cell sub-type that are formed within germinal centers following primary infection and are important in generating an accelerated and more robust antibody-mediated immune response in the case of re-infection (also known as a "secondary immune response").
B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system by secreting antibodies. Additionally, B cells present antigen (they are also classified as professional antigen-presenting cells (APCs)) and secrete cytokines.
In mammals, B cells mature in the bone marrow, which is at the core of most bones. In birds, B cells mature in the bursa of Fabricius, a lymphoid organ. (The "B" from B cells comes from the name of this organ, where it was first discovered by Chang and Glick, and not from bone marrow as commonly believed).
B cells, unlike the other two classes of lymphocytes, T cells and natural killer cells, express B cell receptors (BCRs) on their cell membrane. BCRs allow the B cell to bind a specific antigen, against which it will initiate an antibody response.
Plasmacytoma, multiple myeloma, Waldenström macroglobulinemia and plasma cell leukemia are malignant neoplasms ("cancer") of the plasma cells. Multiple myeloma is frequently identified because malignant plasma cells continue producing an antibody, which can be detected as a paraprotein.
Common variable immunodeficiency is thought to be due to a problem in the differentiation from lymphocytes to plasma cells. The result is a low serum antibody level and risk of infections.
Primary amyloidosis (AL) is caused by the deposition of excess immunoglobulin light chains which are secreted from plasma cells.
With each such subsequent exposure to the same antigen, the number of different responding B cell clones increases to generate a polyclonal response and effectively a greater number of memory B cells persist. Thus, a stronger antibody response (i.e. higher titres of more diverse antibody molecules) having improved affinity towards antigen is typically observed in the secondary immune response. It is unclear at what stage such a model reaches saturation to provide an optimal level of antibody-mediated immune protection against the same antigen. However, the fact that all the accumulation of cells of a single clone population express many of the one same type of antibody and that these memory B cells survive for long periods of time in a body underscores their functional significance during vaccination and the administration of booster shots.
Gene expression profiling has revealed that diffuse large B-cell lymphoma (DLBCL) is composed of at least 3 different sub-groups, each having distinct oncogenic mechanisms that respond to therapies in different ways. Germinal Center B-Cell like (GCB) DLBCLs appear to arise from normal germinal center B cells, while Activated B-cell like (ABC) DLBCLs are thought to arise from postgerminal center B cells that are arrested during plasmacytic differentiation. The differences in gene expression between GCB DLBCL and ABC DLBCL are as vast as the differences between distinct types of leukemia, but these conditions have historically been grouped together and treated as the same disease.
DLBCL patients are at higher risk when they relapse early after R-CHOP chemotherapy and have a poor response to second-line rituximab-containing treatments even when these regimens involve high-dose therapy and autologous stem cell transplant. Approximately half of DLBCL patients develop CHOP-resistant cells. A study of DLBCL cell lines indicated that 14-3-3ζ proteins may play a role in mediating resistance of DLBCL cells to CHOP. 14-3-3 proteins exert anti-apoptotic activity by interfering with the function of BH3-only proteins and has been validated as a potential molecular target for anticancer therapeutic development in other types of cancers.
Autoimmune disease can result from abnormal B cell recognition of self-antigens followed by the production of autoantibodies. Autoimmune diseases where disease activity is correlated with B cell activity include scleroderma, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes, and rheumatoid arthritis.
Malignant transformation of B cells and their precursors can cause a host of cancers, including chronic lymphocytic leukemia (CLL), acute lymphoblastic leukemia (ALL), hairy cell leukemia, follicular lymphoma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, and plasma cell malignancies such as multiple myeloma, Waldenström's macroglobulinemia, and certain forms of amyloidosis.
The disease is an uncontrolled proliferation of B cell lymphocytes latently infected with Epstein-Barr virus. Production of an interleukin-10, an endogenous, pro-regulatory cytokine, has also been implicated.
In immunocompetent patients, Epstein-Barr virus can cause infectious mononucleosis in adolescents, which is otherwise asymptomatic in children during their childhood. However, in immunosuppressed transplant patients, the lack of T-cell immunosurveillance can lead to the proliferation of these EBV-infected of B-lymphocytes.
However, calcineurin inhibitors (tacrolimus and ciclosporin), used as immunosuppressants in organ transplantation inhibit T cell function, and can prevent the control of the B cell proliferation.
Depletion of T cells by use of anti-T cell antibodies in the prevention or treatment of transplant rejection further increases the risk of developing post-transplant lymphoproliferative disorder. Such antibodies include ATG, ALG and OKT3.
Polyclonal PTLD may form tumor masses and present with symptoms due to a mass effect, e.g. symptoms of bowel obstruction. Monoclonal forms of PTLD tend to form a disseminated malignant lymphoma.
MBL has been found in less than 1% of asymptomatic adults under age 40, and in around 5% of adults older than 60. Exact numbers depend on the population studied and the sensitivity of the diagnostic technique.
Like CLL, it appears to be more common in males.
It is also a common finding among older adults with unexplained lymphocytosis.
Recent studies suggest that CLL is very often preceded by MBL,
and that MBL progresses to CLL requiring treatment at a rate of around 1-2% per year. Advancing age and high initial B cell count predispose to progression from MBL to CLL; however, only a small fraction of people with MBL die because of CLL.
Thus, MBL could be regarded as a premalignant condition from which some cases progress to CLL (much similar to the progression of some cases of monoclonal gammopathy of undetermined significance to multiple myeloma).
No treatment is required, but follow-up might be able to detect new diagnoses of CLL. However, this might lead to increased costs, repeated investigations, unnecessary anxiety about cancer and health insurance concerns, while there is no means to prevent progression to CLL.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
Little is yet known about the causes of MBL, but as it is a "forme fruste" of CLL the etiologies of these two conditions would be closely related. Genetic changes that can be found in CLL have also been found in MBL, and relatives of people with CLL have a much higher chance of having MBL (13% of first-degree relatives in one study).
One concern about MBL is related to blood transfusions. MBL was found in 0.14% of blood donors in one study. It is unknown whether blood transfusion can transmit MBL.
One classification system for lymphomas divides the diseases according to the size of the white blood cells that has turned cancerous. The large-cell lymphomas have large cells. A large cell, in this context, has a diameter of 17 to 20 µm. Other groups of lymphomas in this system are the small-cell lymphomas and mixed-cell lymphomas.
A second regimen under evaluation is R-EPOCH (rituximab with etoposide-prednisone-vincristine-doxorubicin-cyclophosphamide), which demonstrated a 5-year progression-free survival (PFS) of 79% in a phase II trial. A phase III trial, CALGB 50303, is now comparing R-EPOCH with R-CHOP in patients with newly diagnosed DLBCL.
One area of active research is on separating patients into groups based on their prognosis and how likely they are to benefit from different drugs. Methods like gene expression profiling and next-generation sequencing may result in more effective and more personalized treatment.
Post-transplant lymphoproliferative disorder (PTLD) is the name given to a B-cell proliferation due to therapeutic immunosuppression after organ transplantation. These patients may develop infectious mononucleosis-like lesions or polyclonal polymorphic B-cell hyperplasia. Some of these B-cells may undergo mutations which will render them malignant, giving rise to a lymphoma.
In some patients, the malignant cell clone can become the dominant proliferating cell type, leading to frank lymphoma, a group of B cell lymphomas occurring in immunosuppressed patients following organ transplant.
Different genetic defects cause HIgM syndrome, the vast majority are inherited as an X-linked recessive genetic trait and most sufferers are male.
IgM is the form of antibody that all B cells produce initially, before they undergo class switching due to exposure to a recognized antigen. Healthy B cells efficiently switch to other types of antibodies as needed to attack invading bacteria, viruses, and other pathogens. In people with hyper IgM syndromes, the B cells keep making IgM antibodies because they can't switch to a different antibody. This results in an overproduction of IgM antibodies and an underproduction of IgA, IgG, and IgE.
Hypergammaglobulinemia is a condition that is characterized by the increased levels of a certain immunoglobulin in the blood serum. The name of the disorder refers to an excess of proteins after serum protein electrophoresis (found in the gammaglobulin region).
Most hypergammaglobulinemias are caused by an excess of immunoglobulin M (IgM), because this is the default immunoglobulin type prior to class switching. Some types of hypergammaglobulinemia are actually caused by a deficiency in the other major types of immunoglobulins, which are IgA, IgE and IgG.
There are 5 types of hypergammaglobulinemias associated with hyper IgM.
MeSH considers hyper IgM syndrome to be a form of dysgammaglobulinemia, not a form of hypergammaglobulinemia .
BENTA disease is a rare genetic disorder of the immune system. BENTA stands for "B cell expansion with NF-κB and T cell anergy" and is caused by germline heterozygous gain-of-function mutations in the gene CARD11 (see OMIM entry #607210). This disorder is characterized by polyclonal B cell lymphocytosis with onset in infancy, splenomegaly, lymphadenopathy, mild immunodeficiency, and increased risk of lymphoma. Investigators Andrew L. Snow and Michael J. Lenardo at the National Institute of Allergy and Infectious Disease at the U.S. National Institutes of Health first characterized BENTA disease in 2012. Dr. Snow's current laboratory at the Uniformed Services University of the Health Sciences is now actively studying this disorder.
Of all cancers involving the same class of blood cell, 2.3% of cases are Burkitt lymphoma. Epstein-Barr virus infection is strongly correlated with this cancer.
There is no known cause for any type of Marginal Zone non-Hodgkins lymphoma, but it occurs when the body produces large amounts of abnormal lymphocytes.
Factors that may increase an individuals chance of developing nodal MZL are being over the age of 60 and having been infected with hepatitis C virus. Factors that may increase an individuals chance of developing MALT lymphoma include being over the age of 50, having an autoimmune condition (rheumatoid arthritis, Hashimoto's thyroiditis), and long lasting chronic inflammation due to infection (H.pylori, Sjogren syndrome, chlamidia infection, Borrelia infection, Campylobacter jejuni infection). Factors that increase an individuals risk of developing splenic MZL include the hepatitis C virus, Epstein-Barr virus, malaria, Sjogren syndrome, and lupus.
In order to reduce the chances of developing MZL, an individual can decrease their exposure to the possible risk factors.
Individuals with BENTA disease have polyclonal B cell lymphocytosis (i.e. excess B cells) developing in infancy, in addition to splenomegaly and lymphadenopathy. Patients may have low serum IgM and mildly anergic T cells. These features likely contribute to the mild immunodeficiency seen with BENTA disease. Patients are generally susceptible to recurrent sinopulmonary and ear infections in childhood, and may be more susceptible to certain viruses including Epstein-Barr virus, BK virus, and molluscum contagiosum.
Immunodeficiency with hyper IgM type 5 is caused by a mutation in the Uracil-DNA glycosylase (UNG) gene, which, like AICDA, is located on chromosome 12. This codes for Uracil DNA Glycosylase, which is responsible for excising previous uracil bases that are due to cytosine deamination, or previous uracil misincorporation from double-stranded previous DNA substrates. This enzyme is also responsible for helping with gene conversion during somatic recombination in B cells. The mutation in the gene causes an enzyme that does not function properly, thus gene conversion does not proceed and class switching cannot occur.
James Cerhan and colleagues, try to determine genetic susceptibility that exists for this cancer by meta-analysis of three genome-wide association studies (GWAS). For this, a total of 3,857 cases and 7,666 controls were analyzed. This study is divided into three stages, which can differentiate into two phases:
– Discovery Phase: Stages 1 and 2.
– Phase replication: Stage 3.