Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Young's syndrome, also known as azoospermia sinopulmonary infections, sinusitis-infertility syndrome and Barry-Perkins-Young syndrome, is a rare condition that encompasses a combination of syndromes such as bronchiectasis, rhinosinusitis and reduced fertility. In individuals with this syndrome, the functioning of the lungs is usually normal but the mucus is abnormally viscous. The reduced fertility (azoospermia) is due to functional obstruction of sperm transport down the genital tract at the epididymis where the sperms are found in viscous, lipid-rich fluid. The syndrome was named after Donald Young, the urologist who first made observations of the clinical signs of the syndrome in 1972. There have been several studies undertaken suggesting that contact with mercury might cause the syndrome.
A variant of Young's syndrome has been observed in an individual, showing slightly different signs and symptoms.
The life expectancy of people with A-T is highly variable. The average is approximately 25 years, but continues to improve with advances in care. The two most common causes of death are chronic lung disease (about one-third of cases) and cancer (about one-third of cases).
People with A-T have a highly increased incidence (approximately 25% lifetime risk) of cancers, particularly lymphomas and leukemia, but other cancers can occur. When possible, treatment should avoid the use of radiation therapy and chemotherapy drugs that work in a way that is similar to radiation therapy (radiomimetic drugs), as these are particularly toxic for people with A-T. The special problems of managing cancer are sufficiently complicated that treatment should be done only in academic oncology centers and after consultation with physicians who have specific expertise in A-T. Unfortunately, there is no way to predict which individuals will develop cancer. Because leukemia and lymphomas differ from solid tumors in not progressing from solitary to metastatic stages, there is less need to diagnose them early in their appearance. Surveillance for leukemia and lymphoma is thus not helpful, other than considering cancer as a diagnostic possibility whenever possible symptoms of cancer (e.g. persistent swollen lymph glands, unexplained fever) arise.
Women who are A-T carriers (who have one mutated copy of the ATM gene), have approximately a two-fold increased risk for the development of breast cancer compared to the general population. This includes all mothers of A-T children and some female relatives. Current consensus is that special screening tests are not helpful, but all women should have routine cancer surveillance.
Urofacial Syndrome occurs due to either disruption or mutation of a gene on chromosome 10q23q24. The gene is located on a 1 centimorgan interval between D10S1433 and D10S603. Alteration of this gene leads to alteration of facial and urinary developmental fields. This gene is believed to be the HPSE2 gene. The HPSE2 gene is expressed in both the central nervous system as well as the bladder. Heparanase 2 is protein coded by exons 8 and 9 on the HPSE2 gene. This protein is believed to be altered in the case of this syndrome. Studies performed on mice indicate that HPSE2 has no enzymatic activity.
Mutations in the HPSE2 gene on chromosome 10q23q24 have been observed to cause Ochoa Syndrome. This means the defective gene responsible for the disorder is located on an autosome (chromosome 10 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The relationship between a defective HPSE2 gene and Ochoa syndrome is unclear. There is postulation that the genetic changes may lead to an abnormality in the brain region, evidence for this postulation is that the areas of the brain that control facial expression and urination are in close proximity of each other. Other hypotheses think that the defective heparanase 2 protein may lead to problems with development of the urinary tract or with muscle function in the face and bladder.
Microdeletions in the Y chromosome have been found at a much higher rate in infertile men than in fertile controls and the correlation found may still go up as improved genetic testing techniques for the Y chromosome are developed.
Much study has been focused upon the "azoospermia factor locus" (AZF), at Yq11. A specific partial deletion of AZFc called "gr/gr deletion" is significantly associated with male infertility among Caucasians in Europe and the Western Pacific region.
Additional genes associated with spermatogenesis in men and reduced fertility upon Y chromosome deletions include RBM, DAZ, SPGY, and TSPY.
Urofacial syndrome ( or hydronephrosis with peculiar facial expression), is an autosomal recessive congenital disorder characterized by inverted facial expressions in association with obstructive disease of the urinary tract. The inverted facial expression presented by children with this syndrome allows for early detection of the syndrome, this inverted smile is easy to see when the child is smiling and laughing. Early detection is vital for establishing a better prognosis as urinary related problems associated with this disease can cause harm if left untreated. Incontinence is another easily detectable symptom of the syndrome that is due to detrusor-sphincter discoordination, although it can easily be mistaken for pyelonephritis.
It may be associated with "HPSE2".
The mechanism of mutation is not different for Y-chromosome microdeletion. However, the ability to repair it differs from other chromosomes. The human Y chromosome is passed directly from father to son, and is not protected against accumulating copying errors, whereas other chromosomes are error corrected by recombining genetic information from mother and father. This may leave natural selection as the primary repair mechanism for the Y chromosome.
Activated PI3K delta syndrome is a primary immunodeficiency disease caused by activating gain of function mutations in the PIK3CD gene. Which encodes the p110δ catalytic subunit of PI3Kδ, APDS-2 (PASLI-R1) is caused by exon-skipping mutations in PIK3R1 which encodes for the regulatory subunit p85α. APDS and APDS-2 affected individuals present with similar symptoms, which include increased susceptibility to airway infections, bronchiectasis and lymphoproliferation.
In terms of genetics, activated PI3K Delta Syndrome is autosomal dominant, a mutation in phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform is the reason for this condition (located at chromosome 1p36.)
Patients presenting with this disease undergo antibiotic treatment and gammaglobulin transfusions. Antibiotics are used to fight off the pathogenic organisms and the gammaglobulin helps provide a normal balance of antibodies to fight the infection. Bone marrow transplantation may be an option in some cases.
OMIM: 308230
Hyper IgM Syndrome Type 1 (HIGM-1) is the X-linked variant of the Hyper-IgM syndrome. The affected individuals are virtually always male, because males only have one X chromosome, received from their mothers. Their mothers are not symptomatic, even though they are carriers of the allele, because the trait is recessive. Male offspring of these women have a 50% chance of inheriting their mother's mutant allele.
There are two main populations of CAVD; the larger group is associated with
cystic fibrosis and occurs because of a mutation in the CFTR gene, while the smaller group (estimated between 10 and 40%) is associated with Unilateral Renal agenesis (URA). The genetic basis of this second group is not well understood.
Mutation of the CFTR gene is found to result in obstructive azoospermia in postpubertal males with cystic fibrosis. Strikingly, CAVD is one of the most consistent features of cystic fibrosis as it affects 98-99% of individuals in this CF patient population. In contrast, acute or persistent respiratory symptoms present in only 51% of total CF patients.
In the subset of males with both CBAVD and URA, the CFTR mutation has been shown to occur at a rate only slightly higher than the overall population. Thus, McCallum, et al. have suggested another mutation may be responsible for this condition.
Individuals with CAVD can reproduce with the assistance of modern technology with a combination of testicular sperm extraction and intracytoplasmic sperm injection (ICSI). However, as the risk of either cystic fibrosis or renal agenesis is likely to be higher in the children, genetic counseling is generally recommended.
Clinically, PASLI disease is characterized by recurrent sinopulmonary infections that can lead to progressive airway damage. Patients also suffer from lymphoproliferation (large lymph nodes and spleen), chronic viremia due to EBV or CMV, distinctive lymphoid nodules at mucosal surfaces, autoimmune cytopenias, and EBV-driven B cell lymphoma. Importantly, the clinical presentations and disease courses are variable with some individuals severely affected, whereas others show little manifestation of disease. This “variable expressivity,” even within the same family, can be striking and may be explained by differences in lifestyle, exposure to pathogens, treatment efficacy, or other genetic modifiers.
Sertoli cell-only syndrome (a.k.a. Del Castillo syndrome and germ cell aplasia ) is a disorder characterized by male sterility without sexual abnormality. It describes a condition of the testes in which only Sertoli cells line the seminiferous tubules.
PASLI disease is a rare genetic disorder of the immune system. PASLI stands for “p110 delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency.” The immunodeficiency manifests as recurrent infections usually starting in childhood. These include bacterial infections of the respiratory system and chronic viremia due to Epstein-Barr virus (EBV) and/or cytomegalovirus (CMV). Individuals with PASLI disease also have an increased risk of EBV-associated lymphoma. Investigators Carrie Lucas, Michael Lenardo, and Gulbu Uzel at the National Institute of Allergy and Infectious Diseases at the U.S. National Institutes of Health and Sergey Nejentsev at the University of Cambridge, UK simultaneously described a mutation causing this condition which they called Activated PI3K Delta Syndrome (APDS).
The Sertoli cell-only syndrome patients normally have normal secondary male features and have normal- or small-sized testes.
In the absence of severe urinary tract obstruction (which generally requires surgery with omental wrapping), treatment is generally with glucocorticoids initially, followed by DMARDs either as steroid-sparing agents or if refractory on steroids. The SERM tamoxifen has shown to improve the condition in various small trials, although the exact mechanism of its action remains unclear.
Associations include:
- Riedel's thyroiditis
- previous radiotherapy
- sarcoidosis
- inflammatory abdominal aortic aneurysm
- drugs
Definitive causes of ureterocele have not been found. While the abnormal growth occurs within the uterus, it has not been substantiated that genetics are to blame.
Thymoma with immunodeficiency (also known as "Good syndrome") is a condition that occurs in adults in whom hypogammaglobulinemia, deficient cell-mediated immunity, and benign thymoma may develop almost simultaneously.
Good Syndrome (GS) is a rare primary immunodeficiency. It is broadly defined as hypogammaglobulinemia associated with presence of a thymoma. It presents in adulthood with an anterior mediastinal mass and recurrent sinopulmonary infections.
The syndrome has been diagnosed around the globe with a focus in Europe. The incidence of thymoma in the United States is 0.15 cases per 100,000 and of these patients, approximately 6-11% have concurrent hypogammaglobulinemia (Kelesidis, 2010). It affects men and women equally and typically is diagnosed in the sixth decade of life, much later than other primary immunodeficiencies.
Dr. Robert Good recognized the association between thymoma and hypogammaglobulinemia in 1954. Since then, little has been discovered in regards to its pathogenesis.
Untreated DPB leads to bronchiectasis, respiratory failure, and death. A journal report from 1983 indicated that untreated DPB had a five-year survival rate of 62.1%, while the 10-year survival rate was 33.2%. With erythromycin treatment, individuals with DPB now have a much longer life expectancy due to better management of symptoms, delay of progression, and prevention of associated infections like "P. aeruginosa". The 10-year survival rate for treated DPB is about 90%. In DPB cases where treatment has resulted in significant improvement, which sometimes happens after about two years, treatment has been allowed to end for a while. However, individuals allowed to stop treatment during this time are closely monitored. As DPB has been proven to recur, erythromycin therapy must be promptly resumed once disease symptoms begin to reappear. In spite of the improved prognosis when treated, DPB currently has no known cure.
DPB is idiopathic, which means an exact physiological, environmental, or pathogenic cause of the disease is unknown. However, several factors are suspected to be involved with its pathogenesis (the way in which the disease works).
The major histocompatibility complex (MHC) is a large genomic region found in most vertebrates that is associated with the immune system. It is located on chromosome 6 in humans. A subset of MHC in humans is human leukocyte antigen (HLA), which controls the antigen-presenting system, as part of adaptive immunity against pathogens such as bacteria and viruses. When human cells are infected by a pathogen, some of them can present parts of the pathogen's proteins on their surfaces; this is called "antigen presentation". The infected cells then become targets for types of cytotoxic T-cells, which kill the infected cells so they can be removed from the body.
Genetic predisposition for DPB susceptibility has been localized to two HLA haplotypes (a nucleotide or gene sequence difference between paired chromosomes, that is more likely to occur among a common ethnicity or trait) common to people of East Asian descent. HLA-B54 is associated with DPB in the Japanese, while HLA-A11 is associated with the disease in Koreans. Several genes within this region of class I HLA are believed to be responsible for DPB, by allowing increased susceptibility to the disease. The common genetic background and similarities in the HLA profile of affected Japanese and Korean individuals were considered in the search for a DPB gene. It was suggested that a mutation of a suspected disease-susceptibility gene located somewhere between HLA-B and HLA-A had occurred on an ancestral chromosome carrying both HLA-B54 and HLA-A11. Further, it is possible that a number of genetic recombination events around the disease locus (location on a chromosome) could have resulted in the disease being associated with HLA-B54 in the Japanese and HLA-A11 in Koreans. After further study, it was concluded that a DPB susceptibility gene is located near the HLA-B locus at chromosome 6p21.3. Within this area, the search for a genetic cause of the disease has continued.
Because many genes belonging to HLA remain unidentified, positional cloning (a method used to identify a specific gene, when only its location on a chromosome is known) has been used to determine that a mucin-like gene is associated with DPB. In addition, diseases caused by identified HLA genes in the DPB-susceptibility region have been investigated. One of these, bare lymphocyte syndrome I (BLS I), exhibits a number of similarities with DPB in those affected, including chronic sinusitis, bronchiolar inflammation and nodules, and the presence of "H. influenzae". Also like DPB, BLS I responds favorably to erythromycin therapy by showing a resolution of symptoms. The similarities between these two diseases, the corresponding success with the same mode of treatment, and the fact that the gene responsible for BLS I is located within the DPB-causing area of HLA narrows the establishment of a gene responsible for DPB. Environmental factors such as inhaling toxic fumes and cigarette smoking are not believed to play a role in DPB, and unknown environmental and other non-genetic causes—such as unidentified bacteria or viruses—have not been ruled out.
Cystic fibrosis (CF), a progressive multi-system lung disease, has been considered in the search for a genetic cause of DPB. This is for a number of reasons. CF, like DPB, causes severe lung inflammation, abundant mucus production, infection, and shows a genetic predominance among Caucasians of one geographic group to the rarity of others; whereas DPB dominates among East Asians, CF mainly affects individuals of European descent. While no gene has been implicated as the cause of DPB, mutation in a specific gene—much more likely to occur in Europeans—causes CF. This mutation in the CF-causing gene is not a factor in DPB, but a unique polymorphism (variation) in this gene is known to occur in many Asians not necessarily affected by either disease. It is being investigated whether this gene in any state of mutation could contribute to DPB.
Its association with various immune-related conditions and response to immunosuppression have led to speculation regarding an autoimmune cause of idiopathic RPF. One-third of the cases are secondary to malignancy, medication (methysergide, hydralazine, beta blockers), aortic aneurysm, or certain infections.
The primary risk factor for COPD globally is tobacco smoking. Of those who smoke, about 20% will get COPD, and of those who are lifelong smokers, about half will get COPD. In the United States and United Kingdom, of those with COPD, 80–95% are either current smokers or previously smoked. The likelihood of developing COPD increases with the total smoke exposure. Additionally, women are more susceptible to the harmful effects of smoke than men. In nonsmokers, secondhand smoke is the cause of about 20% of cases. Other types of smoke, such as, marijuana, cigar, and water-pipe smoke, also confer a risk. Water-pipe smoke appears to be as harmful as smoking cigarettes. Problems from marijuana smoke may only be with heavy use. Women who smoke during pregnancy may increase the risk of COPD in their child. For the same amount of cigarette smoking, women have a higher risk of COPD than men.
Prevalence varies by population, but is on the order of 1 in 100 to 1 in 1000 people, making it relatively common for a genetic disease.
SigAD occurs in 1 of 39 to 57 patients with celiac disease. This is much higher than the prevalence of selective IgA deficiency in the general population. It is also significantly more common in those with type 1 diabetes.
It is more common in males than in females.