Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Sack–Barabas syndrome is rare and has an estimated prevalence of 1 in 100,000 to 200,000.
The initial clinical manifestation of vascular problems in patients with SBS is early, about 25% have their first symptoms at age 20 and more than 80% of patients have had at least one complication by the age of 40.
The median survival for one study of SBS patients was only 48 years.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
The molecular genetics of Axenfeld syndrome are poorly understood, but centers on three genes identified by cloning of chromosomal breakpoints from patients.
This disorder is inheritable as an autosomal dominant trait, which means the defective gene is located on an autosome, and only one copy of the gene is sufficient to cause the disorder when inherited from a parent who has the disorder. As shown in the diagram, this gives a 50/50 chance of offspring inheriting the condition from an affected parent.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
It is named after the German ophthalmologist Theodor Axenfeld who studied anterior segment disorders, especially those such as Rieger Syndrome and the Axenfeld Anomaly.
Axenfeld-Rieger syndrome is characterized by abnormalities of the eyes, teeth, and facial structure. Rieger Syndrome, by medical definition, is determined by the presence of malformed teeth, underdeveloped anterior segment of the eyes, and cardiac problems associated with the Axenfeld anomaly. The term "Rieger syndrome" is sometimes used to indicate an association with glaucoma. Glaucoma occurs in up to 50% of patients with Rieger Syndrome. Glaucoma develops during adolescence or late-childhood, but often occurs in infancy. In addition, a prominent Schwalbe's line, an opaque ring around the cornea known as posterior embryotoxon, may arise with hypoplasia of the iris. Below average height and stature, stunted development of the mid-facial features and mental deficiencies may also be observed in patients.
This not known with certainty but is estimated to be about one per million. It appears to be more common in females than males.
The key for managing Sack–Barabas syndrome is for the patient to be aware of their disease. Close follow up and planning of interventions can significantly prolong and maintain the quality of life of a patient with this disease.
Pregnant affected women must take special care due to the increased risk of premature death due to rupture of arteries, bowel or uterine rupture with a reported mortality rate of 50%.
Genetic counselling is recommended for prospective parents with a family history of Ehlers–Danlos syndrome. Affected parents should be aware of the type of Ehlers-Danlos syndrome they have and its mode of inheritance.
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Symptoms(and signs) that are consistent with this disorder are the following:
Heart-hand syndrome type 2 is also known as Berk–Tabatznik syndrome. Berk–Tabatznik syndrome is a condition with an unknown cause that shows symptoms of short stature, congenital optic atrophy and brachytelephalangy. This condition is extremely rare with only two cases being found.
Heart-hand syndrome type 3 is very rare and has been described only in three members of a Spanish family. It is also known as Heart-hand syndrome, Spanish type.
SHORT syndrome is a medical condition in which affected individuals have multiple birth defects in different organ systems.
It was characterized in 1975.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
NBCCS has an incidence of 1 in 50,000 to 150,000 with higher incidence in Australia. One aspect of NBCCS is that basal-cell carcinomas will occur on areas of the body which are not generally exposed to sunlight, such as the palms and soles of the feet and lesions may develop at the base of palmar and plantar pits.
One of the prime features of NBCCS is development of multiple BCCs at an early age, often in the teen years. Each person who has this syndrome is affected to a different degree, some having many more characteristics of the condition than others.
The key problem is the early fusion of the skull, which can be corrected by a series of surgical procedures, often within the first three months after birth. Later surgeries are necessary to correct respiratory and facial deformities.
The most extensive epidemiological survey on this congenital malformation has been carried out by Dharmasena et al and using English National Hospital Episode Statistics, they calculated the annual incidence of anophthalmia, microphthalmia and congenital malformations of orbit/lacrimal apparatus from 1999 to 2011. According to this study the annual incidence of congenital microphthalmia in the United Kingdom was 10.8 (8.2 to 13.5) in 1999 and 10.0 (7.6 to 12.4) in 2011.
Hyper IgM Syndrome Type 2 is a rare disease. Unlike other hyper-IgM syndromes, the Type 2 patients identified thus far did not present with a history of opportunistic infections. One would expect opportunistic infections in any immunodeficiency syndrome. The putative genetic lesion is in the AICDA gene found at 12p13. The patients have three common findings:
- the absence of immunoglobulin class switch recombination
- the lack of immunoglobulin somatic hypermutations, and
- lymph node hyperplasia caused by the presence of giant germinal centers.
The fifth type of hyper-IgM syndrome has been characterized in three patients from France and Japan. The symptoms are similar to hyper IgM syndrome type 2, but the AICDA gene is intact. These three patients instead had mutations in the catalytic domain of uracil-DNA glycosylase, an enzyme that removes uracil from DNA. In both type 2 and type 5 hyper-IgM syndromes, the patients are profoundly deficient in IgG and IgA because the B cells can't carry out the recombination steps necessary to class-switch.
A mutations in a number of genes have been associated with this condition. Mutations associated with FPL have been reported in "LMNA" (lamin A/C), "PPARG" (PPARγ), "AKT2" (AKT serine/threonine kinase 2), "PLIN1" (perilipin-1), and "CIDEC" (cell-death-inducing DFFA-like effector B).
Six types (1-6) have been described. Types 1-5 are inherited in an autosomal dominant fashion.
Type 1 (Kobberling variety, FPL1) is very rare and has only been reported in women to date. Fat loss is confined to the limbs and mostly in the distal parts. Central obesity may be present. Complications include hypertension, insulin resistance and hypertriglyceridemia. The gene causing this condition is not yet known. This form was first described in 1975.
Type 2 (Dunnigan Variety, FPL2) is the most common form and is due to mutations in the LMNA gene. Over 500 cases have been reported to date. Development up to puberty is normal. Fat is then gradually lost in is the limbs and trunk. Fat may accumulate around the face and between the shoulder blades. Insulin resistance is common. Other conditions associated with this condition include acanthosis nigricans, fatty liver, hypertriglyceridemia and polycystic ovary syndrome in women. There is an increased risk of coronary heart disease. Cardiomyopathy and muscular dystrophy may occur rarely. Xanthoma and nail changes may occur.
Type 3 is due to mutations in the PPARG gene. It is rare with approximately 30 cases reported to date. It is similar to type 2 but tends to be milder.
Type 4 is due to mutations in the PLIN1 gene. It is rare with only a small number of cases reported. Fat loss tends to affect the lower limbs and buttocks. Insulin resistance and hypertriglyceridemia occur. Calf muscular hypertrophy may occur.
Type 5 is due to mutations in the AKT2 gene. It has been reported in four patients all members of the same family. Fat loss affects the upper and lower limbs. The patients also suffered from hypertension, insulin resistance and hypertriglyceridemia.
Type 6 due to mutations in the CIDEC gene. It is inherited in an autosomal recessive fashion and has been reported in only one patient to date. Features included fat loss, severe insulin resistance, fatty liver, acanthosis nigricans and diabetes.
Acrocallosal syndrome (ACLS, ACS, Schinzel-Type) is a rare, heterogeneous, autosomal recessive disorder [3]. The heterogeneity of this condition refers to the multiple genes that may function to contribute to varying degrees of this syndrome [3] and is often linked to consanguinity [2,5]. Characteristics of this syndrome include agenesis of the corpus, macrocephaly, hypertelorism, polydactyly, mental and motor retardation [2], craniofacial dysmorphism, hallux dudplication [3], and sometimes palatal clefting [5]. It has also been reported that there are many similar signs and symptoms between ACLS, Greig cephalopolysyndactyly, and Hydrolethalus Syndrome (HLS), although there is little evidence to support common genetic causation at this point [3].