Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Influenza's effects are much more severe and last longer than those of the common cold. Most people will recover completely in about one to two weeks, but others will develop life-threatening complications (such as pneumonia). Thus, influenza can be deadly, especially for the weak, young and old, or chronically ill. People with a weak immune system, such as people with advanced HIV infection or transplant patients (whose immune systems are medically suppressed to prevent transplant organ rejection), suffer from particularly severe disease. Pregnant women and young children are also at a high risk for complications.
The flu can worsen chronic health problems. People with emphysema, chronic bronchitis or asthma may experience shortness of breath while they have the flu, and influenza may cause worsening of coronary heart disease or congestive heart failure. Smoking is another risk factor associated with more serious disease and increased mortality from influenza.
According to the World Health Organization: "Every winter, tens of millions of people get the flu. Most are only ill and out of work for a week, yet the elderly are at a higher risk of death from the illness. We know the worldwide death toll exceeds a few hundred thousand people a year, but even in developed countries the numbers are uncertain, because medical authorities don't usually verify who actually died of influenza and who died of a flu-like illness." Even healthy people can be affected, and serious problems from influenza can happen at any age. People over 65 years old, pregnant women, very young children and people of any age with chronic medical conditions are more likely to get complications from influenza, such as pneumonia, bronchitis, sinus, and ear infections.
In some cases, an autoimmune response to an influenza infection may contribute to the development of Guillain–Barré syndrome. However, as many other infections can increase the risk of this disease, influenza may only be an important cause during epidemics. This syndrome has been believed to also be a rare side effect of influenza vaccines. One review gives an incidence of about one case per million vaccinations. Getting infected by influenza itself increases both the risk of death (up to 1 in 10,000) and increases the risk of developing GBS to a much higher level than the highest level of suspected vaccine involvement (approx. 10 times higher by recent estimates).
Influenza reaches peak prevalence in winter, and because the Northern and Southern Hemispheres have winter at different times of the year, there are actually two different flu seasons each year. This is why the World Health Organization (assisted by the National Influenza Centers) makes recommendations for two different vaccine formulations every year; one for the Northern, and one for the Southern Hemisphere.
A long-standing puzzle has been why outbreaks of the flu occur seasonally rather than uniformly throughout the year. One possible explanation is that, because people are indoors more often during the winter, they are in close contact more often, and this promotes transmission from person to person. Increased travel due to the Northern Hemisphere winter holiday season may also play a role. Another factor is that cold temperatures lead to drier air, which may dehydrate mucus particles. Dry particles are lighter and can thus remain airborne for a longer period.The virus also survives longer on surfaces at colder temperatures and aerosol transmission of the virus is highest in cold environments (less than 5 °C) with low relative humidity. The lower air humidity in winter seems to be the main cause of seasonal influenza transmission in temperate regions.
However, seasonal changes in infection rates also occur in tropical regions, and in some countries these peaks of infection are seen mainly during the rainy season. Seasonal changes in contact rates from school terms, which are a major factor in other childhood diseases such as measles and pertussis, may also play a role in the flu. A combination of these small seasonal effects may be amplified by dynamical resonance with the endogenous disease cycles. H5N1 exhibits seasonality in both humans and birds.
An alternative hypothesis to explain seasonality in influenza infections is an effect of vitamin D levels on immunity to the virus. This idea was first proposed by Robert Edgar Hope-Simpson in 1965. He proposed that the cause of influenza epidemics during winter may be connected to seasonal fluctuations of vitamin D, which is produced in the skin under the influence of solar (or artificial) UV radiation. This could explain why influenza occurs mostly in winter and during the tropical rainy season, when people stay indoors, away from the sun, and their vitamin D levels fall.
Methods of preventing the spread of influenza among swine include facility management, herd management, and vaccination (ATCvet code: ). Because much of the illness and death associated with swine flu involves secondary infection by other pathogens, control strategies that rely on vaccination may be insufficient.
Control of swine influenza by vaccination has become more difficult in recent decades, as the evolution of the virus has resulted in inconsistent responses to traditional vaccines. Standard commercial swine flu vaccines are effective in controlling the infection when the virus strains match enough to have significant cross-protection, and custom (autogenous) vaccines made from the specific viruses isolated are created and used in the more difficult cases.
Present vaccination strategies for SIV control and prevention in swine farms typically include the use of one of several bivalent SIV vaccines commercially available in the United States. Of the 97 recent H3N2 isolates examined, only 41 isolates had strong serologic cross-reactions with antiserum to three commercial SIV vaccines. Since the protective ability of influenza vaccines depends primarily on the closeness of the match between the vaccine virus and the epidemic virus, the presence of nonreactive H3N2 SIV variants suggests current commercial vaccines might not effectively protect pigs from infection with a majority of H3N2 viruses. The United States Department of Agriculture researchers say while pig vaccination keeps pigs from getting sick, it does not block infection or shedding of the virus.
Facility management includes using disinfectants and ambient temperature to control viruses in the environment. They are unlikely to survive outside living cells for more than two weeks, except in cold (but above freezing) conditions, and are readily inactivated by disinfectants. Herd management includes not adding pigs carrying influenza to herds that have not been exposed to the virus. The virus survives in healthy carrier pigs for up to three months, and can be recovered from them between outbreaks. Carrier pigs are usually responsible for the introduction of SIV into previously uninfected herds and countries, so new animals should be quarantined. After an outbreak, as immunity in exposed pigs wanes, new outbreaks of the same strain can occur.
Prevention of swine influenza has three components: prevention in pigs, prevention of transmission to humans, and prevention of its spread among humans.
In June 2009, the United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) approved the first canine influenza vaccine. This vaccine must be given twice initially with a two-week break, then annually thereafter.
The presence of an upper respiratory tract infection in a dog that has been vaccinated for the other major causes of kennel cough increases suspicion of infection with canine influenza, especially in areas where the disease has been documented. A serum sample from a dog suspected of having canine influenza can be submitted to a laboratory that performs PCR tests for this virus.
Avian influenza—known informally as avian flu or bird flu is a variety of influenza caused by viruses adapted to birds. The type with the greatest risk is highly pathogenic avian influenza (HPAI). Bird flu is similar to swine flu, dog flu, horse flu and human flu as an illness caused by strains of influenza viruses that have adapted to a specific host. Out of the three types of influenza viruses (A, B, and C), influenza A virus is a zoonotic infection with a natural reservoir almost entirely in birds. Avian influenza, for most purposes, refers to the influenza A virus.
Though influenza A is adapted to birds, it can also stably adapt and sustain person-to person transmission. Recent influenza research into the genes of the Spanish flu virus shows it to have genes adapted from both human and avian strains. Pigs can also be infected with human, avian, and swine influenza viruses, allow for mixtures of genes (reassortment) to create a new virus, which can cause an antigenic shift to a new influenza A virus subtype which most people have little to no immune protection.
Avian influenza strains are divided into two types based on their pathogenicity: high pathogenicity (HP) or low pathogenicity (LP). The most well-known HPAI strain, H5N1, appeared in China in 1996, and also has low pathogenic strains found in North America. Companion birds in captivity are unlikely to contract the virus and there has been no report of a companion bird with avian influenza since 2003. Pigeons do not contract or spread the virus.
Between early 2013 to early 2017, 916 lab-confirmed human cases of H7N9 were reported to the World Health Organization (WHO). On 9 January 2017, the National Health and Family Planning Commission of China reported to WHO 106 cases of H7N9 which occurred from late November through late December, including 35 deaths, 2 potential cases of human-to-human transmission, and 80 of these 106 persons stating that they have visited live poultry markets. The cases are reported from Jiangsu (52), Zhejiang (21), Anhui (14), Guangdong (14), Shanghai (2), Fujian (2) and Hunan (1). Similar sudden increases in the number of human cases of H7N9 have occurred in previous years during December and January.
People who do not regularly come into contact with birds are not at high risk for contracting avian influenza. Those at high risk include poultry farm workers, animal control workers, wildlife biologists, and ornithologists who handle live birds. Organizations with high-risk workers should have an avian influenza response plan in place before any cases have been discovered. Biosecurity of poultry flocks is also important for prevention. Flocks should be isolated from outside birds, especially wild birds, and their waste; vehicles used around the flock should be regularly disinfected and not shared between farms; and birds from slaughter channels should not be returned to the farm.
With proper infection control and use of personal protective equipment (PPE), the chance for infection is low. Protecting the eyes, nose, mouth, and hands is important for prevention because these are the most common ways for the virus to enter the body. Appropriate personal protective equipment includes aprons or coveralls, gloves, boots or boot covers, and a head cover or hair cover. Disposable PPE is recommended. An N-95 respirator and unvented/indirectly vented safety goggles are also part of appropriate PPE. A powered air purifying respirator (PAPR) with hood or helmet and face shield is also an option.
Proper reporting of an isolated case can help to prevent spread. The Centers for Disease Control and Prevention (US) recommendation is that if a worker develops symptoms within 10 days of working with infected poultry or potentially contaminated materials, they should seek care and notify their employer, who should notify public health officials.
For future avian influenza threats, the WHO suggests a 3 phase, 5 part plan.
- Phase: Pre-pandemic
- Reduce opportunities for human infection
- Strengthen the early warning system
- Phase: Emergence of a pandemic virus
- Contain or delay spread at the source
- Phase: Pandemic declared and spreading internationally
- Reduce morbidity, mortality, and social disruption
- Conduct research to guide response measures
Vaccines for poultry have been formulated against several of the avian H5N1 influenza varieties. Control measures for HPAI encourage mass vaccinations of poultry though The World Health Organization has compiled a list of known clinical trials of pandemic influenza prototype vaccines, including those against H5N1. In some countries still at high risk for HPAI spread, there is compulsory strategic vaccination though vaccine supply shortages remain a problem.
Cats can be protected from H5N1 if they are given a vaccination, as mentioned above. However, it was also found that cats can still shed some of the virus but in low numbers.
If a cat is exhibiting symptoms, they should be put into isolation and kept indoors. Then they should be taken to a vet to get tested for the presence of H5N1. If there is a possibility that the cat has Avian Influenza, then there should be extra care when handling the cat. Some of the precautions include avoiding all direct contact with the cat by wearing gloves, masks, and goggles. Whatever surfaces the cat comes in contact with should be disinfected with standard household cleaners.
They have given tigers an antiviral treatment of Oseltamivir with a dose of 75 mg/60 kg two times a day. The specific dosage was extrapolated from human data, but there hasn't been any data to suggest protection. As with many antiviral treatments, the dosage depends on the species.
Rotavirus A, which accounts for more than 90% of rotavirus gastroenteritis in humans, is endemic worldwide. Each year rotavirus causes millions of cases of diarrhoea in developing countries, almost 2 million of which result in hospitalisation. In 2013, an estimated 215,000 children younger than five died from rotavirus, 90 percent of whom were in developing countries. Almost every child has been infected with rotavirus by age five. Rotavirus is the leading single cause of severe diarrhoea among infants and children, is responsible for about a third of the cases requiring hospitalisation, and causes 37% of deaths attributable to diarrhoea and 5% of all deaths in children younger than five. Boys are twice as likely as girls to be admitted to hospital for rotavirus.
In the pre-vaccination era, rotavirus infections occurred primarily during cool, dry seasons. The number attributable to food contamination is unknown.
Outbreaks of rotavirus A diarrhoea are common among hospitalised infants, young children attending day care centres, and elderly people in nursing homes. An outbreak caused by contaminated municipal water occurred in Colorado in 1981.
During 2005, the largest recorded epidemic of diarrhoea occurred in Nicaragua. This unusually large and severe outbreak was associated with mutations in the rotavirus A genome, possibly helping the virus escape the prevalent immunity in the population. A similar large outbreak occurred in Brazil in 1977.
Rotavirus B, also called adult diarrhoea rotavirus or ADRV, has caused major epidemics of severe diarrhoea affecting thousands of people of all ages in China. These epidemics occurred as a result of sewage contamination of drinking water. Rotavirus B infections also occurred in India in 1998; the causative strain was named CAL. Unlike ADRV, the CAL strain is endemic. To date, epidemics caused by rotavirus B have been confined to mainland China, and surveys indicate a lack of immunity to this species in the United States.
Rotavirus C has been associated with rare and sporadic cases of diarrhoea in children, and small outbreaks have occurred in families.
Rotaviruses infect the young of many species of animals and they are a major cause of diarrhoea in wild and reared animals worldwide. As a pathogen of livestock, notably in young calves and piglets, rotaviruses cause economic loss to farmers because of costs of treatment associated with high morbidity and mortality rates. These rotaviruses are a potential reservoir for genetic exchange with human rotaviruses. There is evidence that animal rotaviruses can infect humans, either by direct transmission of the virus or by contributing one or several RNA segments to reassortants with human strains.
Cats with Avian Influenza exhibit symptoms that can result in death. They are one of the few species that can get Avian Influenza. The specific virus that they get is H5N1, which is a subtype of Avian Influenza. In order to get the virus, cats need to be in contact with waterfowl, poultry, or uncooked poultry that are infected. Two of the main organs that the virus affects are the lungs and liver.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
Dogs will typically recover from kennel cough within a few weeks. However, secondary infections could lead to complications that could do more harm than the disease itself. Several opportunistic invaders have been recovered from the respiratory tracts of dogs with kennel cough, including Streptococcus, Pasteurella, Pseudomonas, and various coliforms. These bacteria have the potential to cause pneumonia or sepsis, which drastically increase the severity of the disease. These complications are evident in thoracic radiographic examinations. Findings will be mild in animals affected only by kennel cough, while those with complications may have evidence of segmental atelectasis and other severe side effects.
Rotavirus A, which accounts for more than 90% of rotavirus gastroenteritis in humans, is endemic worldwide. Each year rotavirus causes millions of cases of diarrhoea in developing countries, almost 2 million resulting in hospitalisation and an estimated 453,000 resulting in the death of a child younger than five. This is about 40 per cent of all hospital admissions related to diarrhea in children under five worldwide.
In the United States alone—before initiation of the rotavirus vaccination programme—over 2.7 million cases of rotavirus gastroenteritis occurred annually, 60,000 children were hospitalised and around 37 died from the results of the infection. The major role of rotavirus in causing diarrhoea is not widely recognised within the public health community, particularly in developing countries. Almost every child has been infected with rotavirus by age five. It is the leading single cause of severe diarrhoea among infants and children, being responsible for about 20% of cases, and accounts for 50% of the cases requiring hospitalisation. Rotavirus causes 37% of deaths attributable to diarrhoea and 5% of all deaths in children younger than five. Boys are twice as likely as girls to be admitted to hospital.
Rotavirus infections occur primarily during cool, dry seasons. The number attributable to food contamination is unknown.
Outbreaks of rotavirus A diarrhoea are common among hospitalised infants, young children attending day care centres, and elderly people in nursing homes. An outbreak caused by contaminated municipal water occurred in Colorado in 1981.
During 2005, the largest recorded epidemic of diarrhoea occurred in Nicaragua. This unusually large and severe outbreak was associated with mutations in the rotavirus A genome, possibly helping the virus escape the prevalent immunity in the population. A similar large outbreak occurred in Brazil in 1977.
Rotavirus B, also called adult diarrhoea rotavirus or ADRV, has caused major epidemics of severe diarrhoea affecting thousands of people of all ages in China. These epidemics occurred as a result of sewage contamination of drinking water. Rotavirus B infections also occurred in India in 1998; the causative strain was named CAL. Unlike ADRV, the CAL strain is endemic. To date, epidemics caused by rotavirus B have been confined to mainland China, and surveys indicate a lack of immunity to this species in the United States.
Viral pneumonia occurs in about 200 million people a year which includes about 100 million children and 100 million adults.
Infectious diseases causing ILI include malaria, acute HIV/AIDS infection, herpes, hepatitis C, Lyme disease, rabies, myocarditis, Q fever, dengue fever, poliomyelitis, pneumonia, measles, and many others.
Pharmaceutical drugs that may cause ILI include many biologics such as interferons and monoclonal antibodies. Chemotherapeutic agents also commonly cause flu-like symptoms. Other drugs associated with a flu-like syndrome include bisphosphonates, caspofungin, and levamisole. A flu-like syndrome can also be caused by an influenza vaccine or other vaccines, and by opioid withdrawal in addicts.
Viral infections such as canine parainfluenza or canine coronavirus are only shed for roughly 1 week following recovery; however, respiratory infections involving "Bordetella bronchiseptica" can be transmissible for several weeks longer. While there was early evidence to suggest that "B. bronchiseptica" could be shed for many months post-infection, a more recent report places detectable nasal and pharyngeal levels of "B. bronchiseptica" in 45.6% of all clinically healthy dogs. This has potentially expanded the vector from currently or recently infected dogs to half the dog population as carriers. To put the relative levels of shedding bacteria into perspective, a study analyzing the shedding kinetics of "B. bronchiseptica" presents the highest levels of bacterial shedding one week post-exposure, with an order of magnitude decrease in shedding observed every week. This projection places negligible levels of shedding to be expected 6 weeks post-exposure (or ~5 weeks post-onset of symptoms). Dogs which had been administered intranasal vaccine 4 weeks prior to virulent "B. bronchiseptica" challenge displayed little to no bacterial shedding within 3 weeks of exposure to the virulent strain.
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
Influenza-like illness is a nonspecific respiratory illness characterized by fever, fatigue, cough, and other symptoms that stop within a few days. Most cases of ILI are caused not by influenza but by other viruses (e.g., rhinoviruses, coronaviruses, human respiratory syncytial virus, adenoviruses, and human parainfluenza viruses). Less common causes of ILI include bacteria such as "Legionella", "Chlamydia pneumoniae", "Mycoplasma pneumoniae", and "Streptococcus pneumoniae". Influenza, RSV, and certain bacterial infections are particularly important causes of ILI because these infections can lead to serious complications requiring hospitalization. Physicians who examine persons with ILI can use a combination of epidemiologic and clinical data (information about recent other patients and the individual patient) and, if necessary, laboratory and radiographic tests to determine the cause of the ILI.
During the 2009 flu pandemic, many thousands of cases of ILI were reported in the media as suspected swine flu. Most were false alarms. A differential diagnosis of "probable" swine flu requires not only symptoms but also a high likelihood of swine flu due to the person's recent history. During the 2009 flu pandemic in the United States, the CDC advised physicians to "consider swine influenza infection in the differential diagnosis of patients with acute febrile respiratory illness who have either been in contact with persons with confirmed swine flu, or who were in one of the five U.S. states that have reported swine flu cases or in Mexico during the 7 days preceding their illness onset." A diagnosis of "confirmed" swine flu required laboratory testing of a respiratory sample (a simple nose and throat swab).
Because improved sanitation does not decrease the prevalence of rotaviral disease, and the rate of hospitalisations remains high, despite the use of oral rehydrating medicines, the primary public health intervention is vaccination. Two rotavirus vaccines against Rotavirus A infection are safe and effective in children: Rotarix by GlaxoSmithKline and RotaTeq by Merck. Both are taken orally and contain attenuated live virus.
Rotavirus vaccines are licensed in more than 100 countries, but only 17 countries have introduced routine rotavirus vaccination. Following the introduction of routine rotavirus vaccination in the US in 2006, the health burden of rotavirus gastroenteritis "rapidly and dramatically reduced" despite lower coverage levels compared to other routine infant immunizations. Clinical trials of the Rotarix rotavirus vaccine in South Africa and Malawi, found that the vaccine significantly reduced severe diarrhoea episodes caused by rotavirus, and that the infection was preventable by vaccination. A 2012 Cochrane review of 41 clinical trials that included 186,263 participants concluded Rotarix and RotaTeq are effective vaccines. Additional rotavirus vaccines are under development. The World Health Organization(WHO) recommends that rotavirus vaccine be included in all national immunisation programmes. The incidence and severity of rotavirus infections has declined significantly in countries that have acted on this recommendation.
The Rotavirus Vaccine Program is a collaboration between PATH, the (WHO), and the U.S. Centers for Disease Control and Prevention, and is funded by the GAVI Alliance. The Program aims to reduce child morbidity and mortality from diarrhoeal disease by making a vaccine against rotavirus available for use in developing countries.
The presence of avian botulism is extremely hard to detect before an outbreak. Frequent surveillance of sites at risk is needed for early detection of the disease in order to take action and remove carcasses. Vaccines are also developed, but they are expected to have limited effectiveness in stemming outbreaks in wild waterbird populations. However may be effective in reducing mortality for endangered island waterfowl and small non-migratory wild populations. Field tests are needed.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Avian infectious bronchitis (IB) is an acute and highly contagious respiratory disease of chickens. The disease is caused by avian infectious bronchitis virus (IBV), a coronavirus, and characterized by respiratory signs including gasping, coughing, sneezing, tracheal rales, and nasal discharge. In young chickens, severe respiratory distress may occur. In layers, respiratory distress, nephritis, decrease in egg production, and loss of internal (watery egg white) and external (fragile, soft, irregular or rough shells, shell-less) egg quality are reported.
The disease can be prevented in horses with the use of vaccinations. These vaccinations are usually given together with vaccinations for other diseases, most commonly WEE, VEE, and tetanus. Most vaccinations for EEE consist of the killed virus. For humans there is no vaccine for EEE so prevention involves reducing the risk of exposure. Using repellent, wearing protective clothing, and reducing the amount of standing water is the best means for prevention