Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Beare–Stevenson cutis gyrata syndrome is so rare that a reliable incidence cannot be established as of yet; fewer than 20 patients with the condition have been reported.
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
It is likely that this syndrome is inherited in an autosomal dominant fashion, however there may be a recessive form with hypotonia and developmental delay.
AOS is a rare genetic disorder and the annual incidence or overall prevalence of AOS is unknown. Approximately 100 individuals with this disorder have been reported in the medical literature.
Several mutations in the FGFR2 gene (a gene coding for a protein called fibroblast growth factor receptor 2, which is involved in important signaling pathways) are known to cause Beare–Stevenson cutis gyrata syndrome; however, not all patients with the condition have a mutation in their FGFR2 gene. Any alternative underlying causes are currently unidentified. The syndrome follows an autosomal dominant pattern, meaning that if one of the two available genes carries a mutation the syndrome will result. Currently, no familial histories are known (in other words, there are no reports of cases in which a parent carrying a mutation in their FGFR2 gene then propagated said mutation to his or her child).
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Sugarman syndrome is the common name of autosomal recessive oral-facial-digital syndrome type III, one of ten distinct genetic disorders that involve developmental defects to the mouth.
Alternative names for this condition include: Brachydactyly of the hands and feet with duplication of the first toes, Sugarman brachydactyly and Brachydactyly with major proximal phalangeal shortening.
De Barsy syndrome is a rare autosomal recessive genetic disorder. Symptoms include cutis laxa (loose hanging skin) as well as other eye, musculoskeletal, and neurological abnormalities. It is usually progressive, manifesting side effects that can include clouded corneas, cataracts, short stature, dystonia, or progeria (premature aging).
It was first described in 1967 by De Barsy et al. and, as of 2011, there have been 27 cases reported worldwide. The genes that cause De Barsy syndrome have not been identified yet, although several studies have narrowed down the symptoms' cause. A study by Reversade et al. has shown that a mutation in PYCR1, the genetic sequence that codes for mitochondrial enzymes that break down proline, are prevalent in cases of autosomal recessive cutis laxa (ARCL), a condition very similar to De Barsy syndrome. A study by Leao-Teles et al. has shown that De Barsy syndrome may be related to mutations in ATP6V0A2 gene, known as ATP6V0A2-CDG by the new naming system.
Alternative names for De Barsy syndrome include corneal clouding-cutis laxa-mental retardation, cutis laxa-growth deficiency syndrome, De Barsy–Moens–Diercks syndrome, and progeroid syndrome of De Barsy.
Scalp–ear–nipple syndrome (also known as "Finlay–Marks syndrome") is a condition associated with aplasia cutis congenita.
Lenz–Majewski syndrome is a skin condition characterized by hyperostosis, craniodiaphyseal dysplasia, dwarfism, cutis laxa, proximal symphalangism, syndactyly, brachydactyly, mental retardation, enamel hypoplasia, and hypertelorism.
In 2013, whole-exome sequencing showed that a missense mutation resulting in overactive phosphatidylserine synthase 1 was the cause of LMS, making it the first known human disease to be caused by disrupted phosphatidylserine metabolism. The researchers suggested a link between the condition and bone metabolism.
SCARF syndrome is a rare syndrome characterized by skeletal abnormalities, cutis laxa, craniostenosis, ambiguous genitalia, retardation, and facial abnormalities. It shares some features with Lenz-Majewski hyperostotic dwarfism syndrome.
Weissenbacher-Zweymüller syndrome affects males and females in the same numbers. About 30 cases have been reported in medical literature. This disorder can be underdiagnosed causing no true frequency in the population. Only 30 cases have been reported in medical literature.
The overall incidence is ~1/42,000 to 1/50,000 people. Types I and II are the most common types of the syndrome, whereas types III and IV are rare. Type 4 is also known as Waardenburg‐Shah syndrome (association of Waardenburg syndrome with Hirschsprung disease).
Type 4 is rare with only 48 cases reported up to 2002.
About 1 in 30 students in schools for the deaf have Waardenburg syndrome. All races and sexes are affected equally. The highly variable presentation of the syndrome makes it difficult to arrive at precise figures for its prevalence.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
ODD is typically an autosomal dominant condition, but can be inherited as a recessive trait. It is generally believed to be caused by a mutation in the gene GJA1, which codes for the gap junction protein connexin 43. Slightly different mutations in this gene may explain the different way the condition manifests in different families. Most people inherit this condition from one of their parents, but new cases do arise through novel mutations. The mutation has high penetrance and variable expression, which means that nearly all people with the gene show signs of the condition, but these signs can range from very mild to very obvious.
MDM is most common on the Dalmatian island of Mljet (or "Meleda"), thought to be because of a founder effect. It is of autosomal recessive inheritance. It may be caused by a mutation on the "SLURP1" gene, located on chromosome 8.
The outlook for individuals with EDS depends on the type of EDS they have. Symptoms vary in severity, even within one sub-type, and the frequency of complications changes individually. Some people have negligible symptoms while others are severely restricted in their daily life. Extreme joint instability, chronic musculoskeletal pain, degenerative joint disease, frequent injuries, and spinal deformities may limit mobility. Severe spinal deformities may affect breathing. In the case of extreme joint instability, dislocations may result from simple tasks such as rolling over in bed or turning a doorknob. Secondary conditions such as autonomic dysfunction or cardiovascular problems, occurring in any type, can affect prognosis and quality of life. Severe mobility-related disability is seen more often in Hypermobility-type than in Classical-type or Vascular-type.
Although all types are potentially life-threatening, the majority of individuals will have a normal lifespan. However, those with blood vessel fragility have a high risk of fatal complications. Arterial rupture is the most common cause of sudden death in EDS. Spontaneous arterial rupture most often occurs in the second or third decade, but can occur at any time. The median life-expectancy in the population with Vascular EDS is 48 years.
Dominant genetic disorders can be caused by just a single copy of an abnormal gene. This abnormal gene can be the result of being inherited from either parent or be a new mutation. Most cases are caused by a de novo (new) mutation in the gene that occurs during the formation of the egg or sperm. These cases occur when there is no history of the disorder in the family.
The COL11A2 gene is responsible for providing instructions on making one component of the type XI collagen. Type XI collagen is a complex molecule that helps give structure and strength to the connective tissues. Collagen is found in bone. It is also found in cartilage that makes up most of the skeleton during early development. The mutation of COL11A2 in Weissenbacher-Zweymüller syndrome disrupts the assembly of the type XI collagen molecules. The malfunctioning collagen weakens the connective tissue causing impaired bone development.
COL11A2 is also associated with autosomal dominant non-syndromic hearing loss (ADNSHL). All mutations of COL11A2 in ADNSHL are missense mutations.
Meleda disease (MDM) or "mal de Meleda", also called Mljet disease, keratosis palmoplantaris and transgradiens of Siemens, (also known as "Acral keratoderma," "Mutilating palmoplantar keratoderma of the Gamborg-Nielsen type," "Palmoplantar ectodermal dysplasia type VIII", and "Palmoplantar keratoderma of the Norrbotten type") is an extremely rare autosomal recessive congenital skin disorder in which dry, thick patches of skin develop on the soles of the hands and feet, a condition known as palmoplantar hyperkeratosis.
Acheiropodia (ACHP), also known as Horn-Kolb Syndrome, Acheiropody and Aleijadinhos (Brazilian type), is an autosomal recessive disorder that results in hemimelia, a lack of formation of the distal extremities.
This is a congenital defect which consists of bilateral amputations of the distal upper and lower extremities, as well as aplasia of the hands and feet. It was first discovered and is prevalent almost exclusively in Brazil.
Many features of gerodermia osteodysplastica (GO) and another autosomal recessive form of cutis laxa, wrinkly skin syndrome (WSS, ""), are similar to such an extent that both disorders were believed to be variable phenotypes of a single disorder.
Several delineating factors, however, suggest that gerodermia osteodysplastica and wrinkly skin syndrome are distinct entities, but share the same clinic spectrum.
While the prevailing feature of wrinkly, loose skin is more localized with GO, it is usually systemic, yet eases in severity with age during the course of WSS. Also, as the fontanelles ("soft spots") are usually normal on the heads of infants with GO, they are often enlarged in WSS infants.
While WSS is associated with mutations of genes on chromosomes 2, 5, 7, 11 and 14; GO has been linked to mutations in the protein GORAB. A serum sialotransferrin type 2 pattern, also observed with WSS, is not present in GO patients.
But perhaps the most notable feature, differentiating GO from WSS and similar cutis laxa disorders, is the age-specific metaphyseal peg sometimes found in GO-affected long bone, near the knee. Not appearing until around age 4–5, then disappearing by physeal closure, this oddity of bone is thought to represent a specific genetic marker unique to GO and its effects on bone development.
Focal facial dermal dysplasia (FFDD) is a rare genetically heterogeneous group of disorders that are characterized by congenital bilateral scar like facial lesions, with or without associated facial anomalies. It is characterized by hairless lesions with fingerprint like puckering of the skin, especially at the temples, due to alternating bands of dermal and epidermal atrophy.
This condition is also known as Brauer syndrome (hereditary symmetrical aplastic nevi of temples, bitemporal aplasia cutis congenita, bitemporal aplasia cutis congenita: OMIM ) and Setleis syndrome (facial ectodermal dysplasia: OMIM ).
Ehlers–Danlos syndrome is an inherited disorder estimated to occur in about 1 in 5,000 births worldwide. Initially, prevalence estimates ranged from 1 in 250,000 to 1 in 500,000 people, but these estimates were soon found to be vastly inaccurate as the disorder received further study and medical professionals became more adept at accurately diagnosing EDS. In fact, many experts now believe that Ehlers–Danlos syndrome may be far more common than the currently accepted estimate due to the wide range of severities with which the disorder presents.
The prevalence of the 13 types differs dramatically. The most commonly occurring is the Hypermobility type, followed by the Classical type. The other types of Ehlers–Danlos syndrome are very rare. For example, fewer than ten infants and children with the dermatosparaxis type have been described worldwide. Some types of Ehlers–Danlos are more common in Ashkenazi Jews. For example, the chance of being a carrier for type-VIIc Ehlers–Danlos is 1 in 248 in Ashkenazi Jews, whereas the prevalence of this mutation in the general population is 1 in 2,000.
Membranous aplasia cutis is a cutaneous condition, a type of aplasia cutis congenita, which can be seen along the embryonic fusion lines of the face.