Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The course of HPS has been mild in rare instances of the disorder, however, the general prognosis is still considered to be poor.
The disease can cause dysfunctions of the lungs, intestine, kidneys, and heart. The major complication of most forms of the disorder is pulmonary fibrosis, which typically exhibits in patients ages 40–50 years. This is a fatal complication seen in many forms of HPS, and is the usual cause of death from the disorder. HPS patients who develop pulmonary fibrosis typically have type 1 or type 4.
HPS is one of the rare lung diseases currently being studied by The Rare Lung Diseases Consortium (RLDC). The RLDC is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), of the National Center for Advancing Translational Sciences (NCATS). The RLDC is dedicated to developing new diagnostics and therapeutics for patients with rare lung diseases, through collaboration between the NIH, patient organizations and clinical investigators.
There are currently no studies detailing the long term outcome of chronic granulomatous disease with modern treatment. Without treatment, children often die in the first decade of life. The increased severity of X-linked CGD results in a decreased survival rate of patients, as 20% of X-linked patients die of CGD-related causes by the age of 10, whereas 20% of autosomal recessive patients die by the age of 35.
Recent experience from centers specializing in the care of patients with CGD suggests that the current mortality has fallen to under 3% and 1% respectively.
CGD was initially termed "fatal granulomatous disease of childhood" because patients rarely survived past their first decade in the time before routine use of prophylactic antimicrobial agents. The average patient now survives at least 40 years.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
The life expectancy in alpha-mannosidosis is highly variable. Individuals with early onset severe disease often do not survive beyond childhood, whereas those with milder disorders may survive well into adult life.
CGD affects about 1 in 200,000 people in the United States, with about 20 new cases diagnosed each year.
Chronic granulomatous disease affects all people of all races, however, there is limited information on prevalence outside of the United States. One survey in Sweden reported an incidence of 1 in 220,000 people, while a larger review of studies in Europe suggested a lower rate: 1 in 250,000 people.
Blau Syndrome is an autosomal dominant genetic inflammatory disorder which affects the skin, eyes, and joints. It is caused by a mutation in the NOD2 (CARD15) gene. Symptoms usually begin before the age of 4, and the disease manifests as early onset cutaneous sarcoidosis, granulomatous arthritis, and uveitis.
The worldwide incidence of alpha-mannosidosis is in the range of 1 per 500,000 to 1 per 1,000,000. Mannosidosis is found in all ethnic groups in Europe, America, Africa, and Asia.
Incidence of Sanfilippo syndrome varies geographically, with approximately 1 case per 280,000 live births in Northern Ireland, 1 per 66,000 in Australia, and 1 per 50,000 in the Netherlands.
The Australian study estimated the following incidences for each subtype of Sanfilippo syndrome:
The various mutations may be responsible for the untimely initiation of apoptosis in myelocytes, producing their premature destruction. There may be, in addition, other underlying molecular/genetic changes producing DNA mutations and genome instability, which contribute to initiation and progression of this disease.
Type A Niemann–Pick disease (about 85% of cases) has an extremely poor prognosis, with most cases being fatal by the age of 18 months. Type B (adult onset) and type C (mutation affecting a different molecule) Niemann–Pick diseases have a better prognosis.
Myeloperoxidase deficiency is an autosomal recessive genetic disorder featuring deficiency, either in quantity or of function, of myeloperoxidase, an enzyme found in certain phagocytic immune cells, especially polymorphonuclear leukocytes.
It can appear similar to chronic granulomatous disease on some screening tests.
Kostmann syndrome is a group of diseases that affect myelopoiesis, causing a congenital form of neutropenia (severe congenital neutropenia [SCN]), usually without other physical malformations. SCN manifests in infancy with life-threatening bacterial infections.
Most cases of SCN respond to treatment with granulocyte colony-stimulating factor (filgrastim), which increases the neutrophil count and decreases the severity and frequency of infections. Although this treatment has significantly improved survival, people with SCN are at risk of long-term complications such as hematopoietic clonal disorders (myelodysplastic syndrome, acute myeloid leukemia).
Kostmann disease (SCN3), the initial subtype recognized, was clinically described in 1956. This type has an autosomal recessive inheritance pattern, whereas the most common subtype of Kostmann syndrome, SCN1, shows autosomal dominant inheritance.
Although MPO deficiency classically presents with immune deficiency (especially candida albicans infections), the majority of individuals with MPO deficiency show no signs of immunodeficiency.
The lack of severe symptoms suggest that role of myeloperoxidase in the immune response must be redundant to other mechanisms of intracellular killing of phagocytosed bacteria.
Patients with MPO deficiency have a respiratory burst with a normal nitro blue tetrazolium (NBT) test because they still have NADPH oxidase activity, but do not form bleach due to their lack of myeloperoxidase activity. This is in contrast to chronic granulomatous disease, in which the NBT test is 'negative' due to the lack of NADPH oxidase activity (positive test result means neutrophils turn blue, negative means nitroblue tetrazolium remains yellow).
Patients with MPO deficiency are at increased risk for systemic candidiasis.
An allergy is an abnormal immune reaction to a harmless antigen.
- Seasonal allergy
- Mastocytosis
- Perennial allergy
- Anaphylaxis
- Food allergy
- Allergic rhinitis
- Atopic dermatitis
Mucolipidosis (ML) is a group of inherited metabolic disorders that affect the body's ability to carry out the normal turnover of various materials within cells.
When originally named, the mucolipidoses derived their name from the similarity in presentation to both mucopolysaccharidoses and sphingolipidoses. A biochemical understanding of these conditions has changed how they are classified. Although four conditions (I, II, III, and IV) have been labeled as mucolipidoses, type I (sialidosis) is now classified as a glycoproteinosis, and type IV (Mucolipidosis type IV) is now classified as a gangliosidosis.
Photomutilation and transfusion dependent anemia are common complications. Liver disease is also observed in some cases. It has been reported that early childhood-onset haematological manifestations is a poor prognosis factor.
On September 1990, the first gene therapy to combat this disease was performed by Dr. William French Anderson on a four-year-old girl, Ashanti DeSilva, at the National Institutes of Health, Bethesda, Maryland, U.S.A.
In April 2016 the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed and recommended for approval a stem cell gene therapy called Strimvelis, for children with ADA-SCID for whom no matching bone marrow donor is available.
RHBDF2 may also play a role in ovarian epithelial cancer.
Possible associations with gastric cancer and lung cancer have been suggested. Other possible associations include corneal defects, congenital pulmonary stenosis, total anomalous pulmonary venous connection deafness and optic atrophy.
Primary immune deficiency diseases are those caused by inherited genetic mutations. Secondary or acquired immune deficiencies are caused by something outside the body such as a virus or immune suppressing drugs.
Primary immune diseases are at risk to an increased susceptibility to, and often recurrent ear infections, pneumonia, bronchitis, sinusitis or skin infections. Immunodeficient patients may less frequently develop abscesses of their internal organs, autoimmune or rheumatologic and gastrointestinal problems.
- Primary immune deficiencies
- Severe combined immunodeficiency (SCID)
- DiGeorge syndrome
- Hyperimmunoglobulin E syndrome (also known as Job’s Syndrome)
- Common variable immunodeficiency (CVID): B-cell levels are normal in circulation but with decreased production of IgG throughout the years, so it is the only primary immune disorder that presents onset in the late teens years.
- Chronic granulomatous disease (CGD): a deficiency in NADPH oxidase enzyme, which causes failure to generate oxygen radicals. Classical recurrent infection from catalase positive bacteria and fungi.
- Wiskott-Aldrich syndrome (WAS)
- Autoimmune lymphoproliferative syndrome (ALPS)
- Hyper IgM syndrome: X-linked disorder that causes a deficiency in the production of CD40 ligand on activated T-cells. This increases the production and release of IgM into circulation. The B-cell and T-cell numbers are within normal limits. Increased susceptibility to extracellular bacteria and opportunistic infections.
- Leukocyte adhesion deficiency (LAD)
- NF-κB Essential Modifier (NEMO) Mutations
- Selective immunoglobulin A deficiency: the most common defect of the humoral immunity, characterized by a deficiency of IgA. Produces repeating sino-pulmonary and gastrointestinal infections.
- X-linked agammaglobulinemia (XLA; also known as Bruton type agammaglobulinemia): characterized by a deficiency in tyrosine kinase enzyme that blocks B-cell maturation in the bone marrow. No B-cells are produced to circulation and thus, there are no immunoglobulin classes, although there tends to be a normal cell-mediated immunity.
- X-linked lymphoproliferative disease (XLP)
- Ataxia-telangiectasia
- Secondary immune deficiencies
- AIDS
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known. Although there is no true discrimination to who this disease affects, the genes are passed from mother to child, and on occasion from father to child. Women tend not to show symptoms due to their second X chromosome not having the mutation while man are symptomatic, due to having one X chromosome.
Omenn syndrome is an autosomal recessive severe combined immunodeficiency associated with hypomorphic missense mutations in immunologically relevant genes of T-cells (and B-cells) such as recombination activating genes (RAG1 and RAG2), IL-7 Receptor α gene (IL7Rα), DCLRE1C-Artemis, RMRP-CHH, DNA-Ligase IV, common gamma chain, WHN-FOXN1, ZAP-70 and complete DiGeorge anomaly (DiGeorge Syndrome; CHARGE).
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.