Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
A review from 2000 stated that life expectancy was reduced because of a tendency to develop cancer relatively early as well as deaths due to infections related to immunodeficiency.
Sjögren–Larsson syndrome (SLS) is an autosomal recessive form of ichthyosis apparent at birth.
Sjögren–Larsson syndrome is a rare autosomal, recessive, neurocutaneous disease. This disease can be identified by a triad of medical disorders. The first is ichthyosis, which is a buildup of skin to form a scale-like covering that causes dry skin and other problems. The second identifier is spastic paraplegia which is characterized by leg spasms. The final identifier is intellectual delay.
The gene of SLS is found on chromosome 17. In order for a child to receive SLS both parents must be carriers of the SLS gene. If they are carriers their child has a ¼ chance of getting the disease. In 1957 Sjogren and Larsson proposed that the Swedes with the disease all descended from a common ancestor 600 years ago. Today only 30–40 persons in Sweden have this disease.
Treatment with isotretinoin may induce substantial resolution of skin lesions, but the risk of secondary infection remains.
It is associated with a deficiency of the enzyme "fatty aldehyde dehydrogenase". At least 11 distinct mutations have been identified.
ICF syndrome can be caused by a mutation in the DNA-methyltransferase-3b ("Dnmt3b") gene, located on chromosome 20q11.2. The disease is inherited in an autosomal recessive manner.
Tetra-amelia syndrome has been reported in only a few families worldwide.
According to a 2011 study by Bermejo-Sanchez, amelia – that is, the lacking of one or more limbs – occurs in roughly 1 out of every 71,000 pregnancies.
Laurence–Moon syndrome (LMS) is a rare autosomal recessive genetic disorder associated with retinitis pigmentosa, spastic paraplegia, and mental disabilities.
Genetic disorders may also be complex, multifactorial, or polygenic, meaning they are likely associated with the effects of multiple genes in combination with lifestyles and environmental factors. Multifactorial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat, because the specific factors that cause most of these disorders have not yet been identified. Studies which aim to identify the cause of complex disorders can use several methodological approaches to determine genotype-phenotype associations. One method, the genotype-first approach, starts by identifying genetic variants within patients and then determining the associated clinical manifestations. This is opposed to the more traditional phenotype-first approach, and may identify causal factors that have previously been obscured by clinical heterogeneity, penetrance, and expressivity.
On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. But this does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure).
- asthma
- autoimmune diseases such as multiple sclerosis
- cancers
- ciliopathies
- cleft palate
- diabetes
- heart disease
- hypertension
- inflammatory bowel disease
- intellectual disability
- mood disorder
- obesity
- refractive error
- infertility
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
Zamzam–Sheriff–Phillips syndrome is a rare autosomal recessive congenital disorder. It is characterized by aniridia, ectopia lentis, abnormal upper incisors and intellectual disability. Not a lot of research has been undertaken of this particular disease so thus far there is no known gene that affects this condition. However it has been hypothesised that the symptoms described are found at a particular gene, though intellectual disability is believed to be due to a different genetic cause.
Consanguinuity (intermarrying among relatives such as cousins), often associated with autosomal recessive inheritance, has been attributed to the inheritance of this disease.
RL syndrome is characterized by renal dysplasia, growth retardation, phocomelia or mesomelia, radiohumeral fusion (joining of radius and humerus), rib abnormalities, anomalies of the external genitalia and potter-like facies among many others.
De Barsy syndrome is a rare autosomal recessive genetic disorder. Symptoms include cutis laxa (loose hanging skin) as well as other eye, musculoskeletal, and neurological abnormalities. It is usually progressive, manifesting side effects that can include clouded corneas, cataracts, short stature, dystonia, or progeria (premature aging).
It was first described in 1967 by De Barsy et al. and, as of 2011, there have been 27 cases reported worldwide. The genes that cause De Barsy syndrome have not been identified yet, although several studies have narrowed down the symptoms' cause. A study by Reversade et al. has shown that a mutation in PYCR1, the genetic sequence that codes for mitochondrial enzymes that break down proline, are prevalent in cases of autosomal recessive cutis laxa (ARCL), a condition very similar to De Barsy syndrome. A study by Leao-Teles et al. has shown that De Barsy syndrome may be related to mutations in ATP6V0A2 gene, known as ATP6V0A2-CDG by the new naming system.
Alternative names for De Barsy syndrome include corneal clouding-cutis laxa-mental retardation, cutis laxa-growth deficiency syndrome, De Barsy–Moens–Diercks syndrome, and progeroid syndrome of De Barsy.
Galloway Mowat syndrome is a very rare autosomal recessive genetic disorder, consisting of a variety of features including hiatal hernia, microcephaly and nephrotic syndrome.
ICF syndrome (or Immunodeficiency, Centromere instability and Facial anomalies syndrome) is a very rare autosomal recessive immune disorder.
Renal dysplasia-limb defects syndrome (RL syndrome), also known as Ulbright–Hodes syndrome, is a very rare autosomal recessive congenital disorder. It has been described in three infants, all of whom died shortly after birth.
Galloway Mowat syndrome is an autosomal recessive disorder, which means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Nakajo syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Nakajo syndrome, also called nodular erythema with digital changes, is a rare autosomal recessive congenital disorder first reported in 1939 by A. Nakajo in the offspring of consanguineous (blood relative) parents. The syndrome can be characterized by erythema (reddened skin), loss of body fat in the upper part of the body, and disproportionately large eyes, ears, nose, lips, and fingers.
Woodhouse–Sakati syndrome, also called hypogonadism, alopecia, diabetes mellitus, intellectual disability and extrapyramidal syndrome, is a rare autosomal recessive multisystem disorder which causes malformations throughout the body, and deficiencies affecting the endocrine system.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
LMS is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Kenny-Caffey syndrome is a rare genetic condition causing skeletal abnormalities. Individuals with the condition have a shortened stature and thickened long bones. Hypocalcemia is also common.
KCS is autosomal dominant and caused by a mutation in FAM111A. It affects males and females in equal proportion.
Treatment is based on symptoms.
There are currently no known genes linked to Kapur–Toriello syndrome.
Worldwide, it has been documented in 110 persons, 85 of them Finnish. It is a recessive genetic disease. Many people with Mulibrey nanism have parents who are closely related, consanguine. Signs and symptoms are variable, siblings who suffer this disease sometimes do not share the same symptoms.