Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Anti-platelet autoantibodies in a pregnant woman with ITP will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, ITP is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by ITP will have platelet counts <50,000/uL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with neonatal alloimmune thrombocytopenia (NAIT).
No lab test can reliably predict if neonatal thrombocytopenia will occur. The risk of neonatal thrombocytopenia is increased with:
- Mothers with a history of splenectomy for ITP
- Mothers who had a previous infant affected with ITP
- Gestational (maternal) platelet count less than 100,000/uL
It is recommended that pregnant women with thrombocytopenia or a previous diagnosis of ITP should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their ITP which may include steroids or IVIG. Fetal blood analysis to determine the platelet count is not generally performed as ITP-induced thrombocytopenia in the fetus is generally less severe than NAIT. Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia. It is recommended that neonates be followed with serial platelet counts for the first few days after birth.,
The incidence of acute TTP in adults is around 1.7–4.5 per million and year. These cases are nearly all due to the autoimmune form of TTP, where autoantibodies inhibit ADAMTS13 activity. The prevalence of USS has not yet been determined but is assumed to constitute less than 5% of all acute TTP cases. The syndrome's inheritance is autosomal recessive, and is more often caused by compound heterozygous than homozygous mutations. The age of onset is variable and can be from neonatal age up to the 5th–6th decade. The risk of relapses differs between affected individuals. Minimization of the burden of disease can be reached by early diagnosis and initiation of prophylaxis if required.
The prevalence of vWD is about one in 100 individuals. However, the majority of these people do not have symptoms. The prevalence of clinically significant cases is one per 10,000. Because most forms are rather mild, they are detected more often in women, whose bleeding tendency shows during menstruation. It may be more severe or apparent in people with blood type O.
Many of the further classifications of Giant Platelet Disorder occur as a result of being genetically passed down through families as an autosomal recessive disorder, such as in Bernard-Soulier syndrome and Grey Platelet syndrome. To get this disorder both of the parents have to have it for it to be passed down to the child. It has to be transmitted in an autosomal recessive pattern. There chromosome number is 17.
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
KMS has a mortality rate of about 30%. For patients that survive the acute disease, supportive care may be required through a gradual recovery.
Furthermore, patients may need care from a dermatologist or plastic surgeon for residual cosmetic lesions. On long-term followup, most patients have skin discoloration and/or mild disfiguration from the dormant tumor.
Secondary TTP is diagnosed when the patient's history mentions one of the known features associated with TTP. It comprises about 40% of all cases of TTP. Predisposing factors are:
- Cancer
- Bone marrow transplantation
- Pregnancy
- Medication use:
- Antiviral drugs (acyclovir)
- Certain chemotherapy medications such as gemcitabine and mitomycin C
- Quinine
- Oxymorphone
- Quetiapine
- Bevacizumab
- Sunitinib
- Platelet aggregation inhibitors (ticlopidine, clopidogrel, and prasugrel)
- Immunosuppressants (ciclosporin, mitomycin, tacrolimus/FK506, interferon-α)
- Hormone altering drugs (estrogens, contraceptives, hormone replacement therapy)
- HIV-1 infection
The mechanism of secondary TTP is poorly understood, as ADAMTS13 activity is generally not as depressed as in idiopathic TTP, and inhibitors cannot be detected. Probable etiology may involve, at least in some cases, endothelial damage, although the formation of thrombi resulting in vessel occlusion may not be essential in the pathogenesis of secondary TTP. These factors may also be considered a form of secondary aHUS; patients presenting with these features are, therefore, potential candidates for anticomplement therapy.
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
The vWF gene is located on the short arm "p" of chromosome 12 (12p13.2). It has 52 exons spanning 178kbp. Types 1 and 2 are inherited as autosomal dominant traits and type 3 is inherited as autosomal recessive. Occasionally, type 2 also inherits recessively. vWD occurs in approximately 1% of the population and affects men and women equally.
Glanzmann's thrombasthenia can be inherited in an autosomal recessive manner or acquired as an autoimmune disorder.
The bleeding tendency in Glanzmann's thrombasthenia is variable, some individuals having minimal bruising, while others have frequent, severe, potentially fatal hemorrhages. Moreover, platelet αβ levels correlate poorly with hemorrhagic severity, as virtually undetectable αβ levels can correlate with negligible bleeding symptoms, and 10%–15% levels can correlate with severe hemorrhage. Unidentified factors other than the platelet defect itself may have important roles.
Bernard–Soulier syndrome (BSS), also called hemorrhagiparous thrombocytic dystrophy, is a rare autosomal recessive coagulopathy (bleeding disorder) that causes a deficiency of "glycoprotein Ib" (GpIb), the receptor for von Willebrand factor. The incidence of BSS is estimated to be less than 1 case per million persons, based on cases reported from Europe, North America, and Japan. BSS is a giant platelet disorder, meaning that it is characterized by abnormally large platelets.
Individuals with QPD are at risk for experiencing a number of bleeding symptoms, including joint bleeds, hematuria, and large bruising. In 2010, the genetic cause of QPD has been determined as a mutation involving an extra copy of the uPA (urokinase plasminogen activator) gene http://bloodjournal.hematologylibrary.org/content/115/6/1264.long. The mutation causes overproduction of an enzyme that accelerates blood clot breakdown.
Therapy involves both preventive measures and treatment of specific bleeding episodes.
- Dental hygiene lessens gingival bleeding
- Avoidance of antiplatelet agents such as aspirin and other anti-inflammatory drugs (NSAIDs) such as ibuprofen and naproxen, and anticoagulants
- Iron or folate supplementation may be necessary if excessive or prolonged bleeding has caused anemia
- Hepatitis B vaccine
- Antifibrinolytic drugs such as tranexamic acid or ε-aminocaproic acid (Amicar)
- Desmopressin (DDAVP) does not normalize the bleeding time in Glanzmann's thrombasthenia but anecdotally improves hemostasis
- Hormonal contraceptives to control excessive menstrual bleeding
- Topical agents such as gelfoam, fibrin sealants, polyethylene glycol polymers, custom dental splints
- Platelet transfusions (only if bleeding is severe; risk of platelet alloimmunization)
- Recombinant factor VIIa, AryoSeven or NovoSeven FDA approved this drug for the treatment of the disease on July 2014.
- Hematopoietic stem cell transplantation (HSCT) for severe recurrent hemorrhages
Thrombocytopenia affects a few percent of newborns, and its prevalence in neonatal intensive care units (NICU) is high. Normally, it is mild and resolves without consequences. Most cases affect preterm birth infants and result from placental insufficiency and/or fetal hypoxia. Other causes, such as alloimmunity, genetics, autoimmunity, and infection, are less frequent.
Thrombocytopenia that starts after the first 72 hours since birth is often the result of underlying sepsis or necrotizing enterocolitis (NEC). In the case of infection, PCR tests may be useful for rapid pathogen identification and detection of antibiotic resistance genes. Possible pathogens include viruses (e.g. Cytomegalovirus (CMV), rubella virus, HIV), bacteria (e.g. "Staphylococcus sp.", "Enterococcus sp.", "Streptococcus agalactiae" (GBS), "Listeria monocytogenes", "Escherichia coli", "Haemophilus influenzae", "Klebsiella pneumoniae", "Pseudomonas aeruginosa", "Yersinia enterocolitica"), fungi (e.g. "Candida sp."), and "Toxoplasma gondii". The severity of thrombocytopenia may be correlated with pathogen type; some research indicates that the most severe cases are related to fungal or gram-negative bacterial infection. The pathogen may be transmitted during or before birth, by breast feeding, or during transfusion. Interleukin-11 is being investigated as a drug for managing thrombocytopenia, especially in cases of sepsis or necrotizing enterocolitis (NEC).
A normal platelet count is considered to be in the range of 150,000–450,000 per microlitre (μl) of blood for most healthy individuals. Hence one may be considered thrombocytopenic below that range, although the threshold for a diagnosis of ITP is not tied to any specific number.
The incidence of ITP is estimated at 50–100 new cases per million per year, with children accounting for half of that amount. At least 70 percent of childhood cases will end up in remission within six months, even without treatment. Moreover, a third of the remaining chronic cases will usually remit during follow-up observation, and another third will end up with only mild thrombocytopenia (defined as a platelet count above 50,000). A number of immune related genes and polymorphisms have been identified as influencing predisposition to ITP, with FCGR3a-V158 allele and KIRDS2/DL2 increasing susceptibility and KIR2DS5 shown to be protective.
ITP is usually chronic in adults and the probability of durable remission is 20–40 percent. The male to female ratio in the adult group varies from 1:1.2 to 1.7 in most age ranges (childhood cases are roughly equal for both genders) and the median age of adults at the diagnosis is 56–60. The ratio between male and female adult cases tends to widen with age. In the United States, the adult chronic population is thought to be approximately 60,000—with women outnumbering men approximately 2 to 1, which has resulted in ITP being designated an orphan disease.
The mortality rate due to chronic ITP varies but tends to be higher relative to the general population for any age range. In a study conducted in Great Britain, it was noted that ITP causes an approximately 60 percent higher rate of mortality compared to gender- and age-matched subjects without ITP. This increased risk of death with ITP is largely concentrated in the middle-aged and elderly. Ninety-six percent of reported ITP-related deaths were individuals 45 years or older. No significant difference was noted in the rate of survival between males and females.
This condition may also be congenital. Such cases may be caused by mutations in the ADAMTS13 gene. This hereditary form of TTP is called the Upshaw–Schulman syndrome. Patients with this inherited ADAMTS13 deficiency have a surprisingly mild phenotype, but develop TTP in clinical situations with increased von Willebrand factor levels, e.g. infection. Reportedly, less than 1% of all TTP cases are due to Upshaw–Schulman syndrome. Patients with this syndrome generally have 5–10% of normal ADAMTS-13 activity.
Abnormally high rates of platelet destruction may be due to immune or non-immune conditions, including:
- Immune thrombocytopenic purpura
- Thrombotic thrombocytopenic purpura
- Hemolytic-uremic syndrome
- Disseminated intravascular coagulation
- Paroxysmal nocturnal hemoglobinuria
- Antiphospholipid syndrome
- Systemic lupus erythematosus
- Post-transfusion purpura
- Neonatal alloimmune thrombocytopenia
- Hypersplenism
- Dengue fever
- Gaucher's disease
- Zika virus
Inadequate nutrition or the consumption of tainted food are suspected. Both IgG and IgM autoantibodies to platelet and to glycoprotein IIb/IIIa is found in majority of patients.
Several therapy developments for TTP emerged during recent years. Artificially produced ADAMTS13 has been used in mice and testing in humans has been announced. Another drug in development is targeting VWF and its binding sites, thereby reducing VWF-platelet interaction, especially on ULVWF during a TTP episode. Among several (multi-)national data bases a worldwide project has been launched to diagnose USS patients and collect information about them to gain new insights into this rare disease with the goal to optimize patient care.
The disorder is characterized by large amounts of the fibrinolytic enzyme urokinase-type plasminogen activator (u-PA) in platelets. Consequently, stored platelet plasminogen is converted to plasmin, which is thought to play a role in degrading a number of proteins stored in platelet α-granules. These proteins include platelet factor V, Von Willebrand factor, fibrinogen, thrombospondin-1, and osteonectin. There is also a quantitative deficiency in the platelet protein multimerin 1 (MMRN1). Furthermore, upon QPD platelet activation, u-PA can be released into forming clots and accelerate clot lysis, resulting in delayed-onset bleeding (12-24hrs after injury).
Management of KMS, particularly in severe cases, can be complex and require the joint effort of multiple subspecialists. This is a rare disease with no consensus treatment guidelines or large randomized controlled trials to guide therapy.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
Increased platelet counts can be due to a number of disease processes:
- Essential (primary)
- Essential thrombocytosis (a form of myeloproliferative disease)
- Other myeloproliferative disorders such as chronic myelogenous leukemia, polycythemia vera, myelofibrosis
- Reactive (secondary)
- Inflammation
- Surgery (which leads to an inflammatory state)
- Hyposplenism (decreased breakdown due to decreased function of the spleen)
- Splenectomy
- Asplenia (absence of normal spleen function)
- Iron deficiency anemia or hemorrhage
Over-medication with drugs that treat thrombocytopenia, such as eltrombopag or romiplostim, may also result in thrombocytosis.
Other causes include the following
- Kawasaki disease
- Soft tissue sarcoma
- Osteosarcoma
- Dermatitis (rarely)
- Inflammatory bowel disease
- Rheumatoid arthritis
- Nephritis
- Nephrotic syndrome
- Bacterial diseases, including pneumonia, sepsis, meningitis, urinary tract infections, and septic arthritis.
The vast majority of causes of thrombocytosis are acquired disorders, but in a few cases, they may be congenital, such as thrombocytosis due to congenital asplenia.
Harris platelet syndrome (HPS) is the most common inherited giant platelet disorder.