Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Those diseases understood as congenital in origin could either be specific to the ocular organ system (LHON, DOA) or syndromic (MELAS, Multiple Sclerosis). It is estimated that these inherited optic neuropathies in the aggregate affect 1 in 10,000
Of the acquired category, disease falls into further etiological distinction as arising from toxic (drugs or chemicals) or nutritional/metabolic (vitamin deficiency/diabetes) insult. It is worth mentioning that under-nutrition and toxic insult can occur simultaneously, so a third category may be understood as having a combined or mixed etiology. We will refer to this as Toxic/Nutritional Optic Neuropathy, whereby nutritional deficiencies and toxic/metabolic insults are the simultaneous culprits of visual loss associated with damage and disruption of the RGC and optic nerve mitochondria.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
The incidence of dominant optic atrophy has been estimated to be 1:50000 with prevalence as high as 1:10000 in the Danish population (Votruba, 1998). Dominant optic atrophy is inherited in an autosomal dominant manner. That is, a heterozygous patient with the disease has a 50% chance of passing on the disease to offspring, assuming his/her partner does not have the disease. Males and females are affected at the same rate. Although Kjer's has a high penetrance (98%), severity and progression of DOA are extremely variable even within the same family.
Dominant optic atrophy is also known as autosomal dominant optic atrophy, Kjer type; Kjer optic atrophy; or, Kjer's autosomal dominant optic atrophy.
In ischemic optic neuropathies, there is insufficient blood flow (ischemia) to the optic nerve. The anterior optic nerve is supplied by the short posterior ciliary artery and choroidal circulation, while the retrobulbar optic nerve is supplied intraorbitally by a pial plexus, which arises from the ophthalmic artery, internal carotid artery, anterior cerebral artery, and anterior communicating arteries. Ischemic optic neuropathies are classified based on the location of the damage and the cause of reduced blood flow, if known.
- Anterior ischemic optic neuropathy (AION) includes diseases that affect the optic nerve head and cause swelling of the optic disc. These diseases often cause sudden rapid visual loss in one eye. Inflammatory diseases of the blood vessels, like giant cell arteritis, polyarteritis nodosa, Churg-Strauss syndrome, granulomatosis with polyangiitis, and rheumatoid arthritis can cause arteritic AIONs (AAION). The vast majority of AIONs are nonarteritic AIONs (NAION). The most common acute optic neuropathy in patients over 50 years of age, NAION has an annual incidence of 2.3-10.2/100,000. NAION presents as a painless loss of vision, often when awakening, that occurs over hours to days. Most patients lose the lower half of their visual field (an inferior altitudinal loss), though superior altitudinal loss is also common. The pathophysiology of NAION is unknown, but it is related to poor circulation in the optic nerve head. NAION is often associated with diabetes mellitus, elevated intraocular pressure (acute glaucoma, eye surgery), high cholesterol, hypercoagulable states, a drop in blood pressure (bleeding, cardiac arrest, peri-operative esp. cardiac and spine procedures), and sleep apnea. Rarely, amiodarone, interferon-alpha, and erectile dysfunction drugs have been associated with this disease.
- Posterior ischemic optic neuropathy is a syndrome of sudden visual loss with optic neuropathy without initial disc swelling with subsequent development of optic atrophy. This can occur in patients who are predisposed to AAION and NAION as described above as well as those who had cardiac and spine surgery or serious episodes of hypotension.
- Radiation optic neuropathy (RON) is also thought to be due to ischemia of the optic nerve that occurs 3 months to 8 or more years after radiation therapy to the brain and orbit. It occurs most often around 1.5 years after treatment and results in irreversible and severe vision loss, which may also be associated with damage to the retina (radiation retinopathy). This is thought to be due to damage to dividing glial and vascular endothelial cells. RON can present with transient visual loss followed by acute painless visual loss in one or both eyes several weeks later. The risk of RON is significantly increased with radiation doses over 50 Gy.
- There is also some evidence that interferon treatment (pegylated interferon with ribavirin) for hepatitis C virus can cause optic neuropathy.
The most recognized cause of a toxic optic neuropathy is methanol intoxication. This can be a life-threatening event that normally accidentally occurs when the victim mistook, or substituted, methanol for ethyl alcohol. Blindness can occur with drinking as little as an ounce of methanol, but this can be counteracted by concurrent drinking of ethyl alcohol. The patient initially has nausea and vomiting, followed by respiratory distress, headache, and visual loss 18–48 hours after consumption. Without treatment, patients can go blind, and their pupils will dilate and stop reacting to light.
- Ethylene glycol, a component of automobile antifreeze, is a poison that is toxic to the whole body including the optic nerve. Consumption can be fatal, or recovery can occur with permanent neurologic and ophthalmologic deficits. While visual loss is not very common, increased intracranial pressure can cause bilateral optic disc swelling from cerebral edema. A clue to the cause of intoxication is the presence of oxalate crystals in the urine. Like methanol intoxication, treatment is ethanol consumption.
- Ethambutol, a drug commonly used to treat tuberculosis, is notorious for causing toxic optic neuropathy. Patients with vision loss from ethambutol toxicity lose vision in both eyes equally. This initially presents with problems with colors (dyschromatopsia) and can leave central visual deficits. If vision loss occurs while using ethambutol, it would be best to discontinue this medication under a doctor’s supervision. Vision can improve slowly after discontinuing ethambutol but rarely returns to baseline.
- Amiodarone is an antiarrhythmic medication commonly used for abnormal heart rhythms (atrial or ventricular tachyarrythmias). Most patients on this medication get corneal epithelial deposits, but this medication has also been controversially associated with NAION. Patients on amiodarone with new visual symptoms should be evaluated by an ophthalmologist.
- Tobacco exposure, most commonly through pipe and cigar smoking, can cause an optic neuropathy. Middle-aged or elderly men are often affected and present with painless, slowly progressive, color distortion and visual loss in both eyes. The mechanism is unclear, but this has been reported to be more common in individuals who are already suffering from malnutrition.
In Northern European populations about one in 9000 people carry one of the three primary LHON mutations.
The LHON ND4 G11778A mutation dominates as the primary mutation in most of the world
with 70% of Northern European cases and 90% of Asian cases. Due to a Founder effect, the LHON ND6 T14484C mutation accounts for 86% of LHON cases in Quebec, Canada.
More than 50 percent of males with a mutation and more than 85 percent of females with a mutation never experience vision loss or related medical problems. The particular mutation type may predict the likelihood of penetrance, severity of illness and probability of vision recovery in the affected. As a rule of thumb, a woman who harbors a homoplasmic primary LHON mutation has a ~40% risk of having an affected son and a ~10% risk of having an affected daughter.
Additional factors may determine whether a person develops the signs and symptoms of this disorder. Environmental factors such as smoking and alcohol use may be involved, although studies of these factors have produced conflicting results. Researchers are also investigating whether changes in additional genes, particularly genes on the X chromosome,
In industrialized nations, toxic and nutritional optic neuropathy is relatively uncommon and is primarily associated with specific medications, occupational exposures, or tobacco and alcohol abuse. However, in developing nations, nutritional optic neuropathy is much more common, especially in regions afflicted by famine. Both genders and all races are equally affected, and all ages are susceptible.
The predominant cause of nutritional optic neuropathy is thought to be deficiency of B-complex vitamins, particularly thiamine (vitamin B), cyanocobalamin (vitamin B) and recently copper Deficiency of pyridoxine (vitamin B), niacin (vitamin B), riboflavin (vitamin B), and/or folic acid also seems to play a role. Those individuals who abuse alcohol and tobacco are at greater risk because they tend to be malnourished. Those with pernicious anemia are also at risk due to an impaired ability to absorb vitamin B from the intestinal tract.
The mechanism of injury for NAION used to be quite controversial. However, experts in the field have come to a consensus that most cases involve two main risk factors. The first is a predisposition in the form of a type of optic disc shape. The optic disc is where the axons from the retinal ganglion cells collect into the optic nerve. The optic nerve is the bundle of axons that carry the visual signals from the eye to the brain. This optic nerve must penetrate through the wall of the eye, and the hole to accommodate this is usually 20-30% larger than the nerve diameter. In some patients the optic nerve is nearly as large as the opening in the back of the eye, and the optic disc appears "crowded" when seen by ophthalmoscopy. A crowded disc is also referred to as a "disc at risk". While a risk factor, the vast majority of individuals with crowded discs do not experience NAION.
The second major risk factor involves more general cardiovascular risk factors. The most common are diabetes, hypertension and high cholesterol levels. While these factors predispose a patient to develop NAION, the most common precipitating factor is marked fall of blood pressure during sleep (nocturnal arterial hypotension)- that is why at least 75% of the patients first discover visual loss first on waking from sleep. These vascular risk factors lead to ischemia (poor blood supply) to a portion of the optic disc. The disc then swells, and in a crowded optic disc, this leads to compression and more ischemia.
Since both eyes tend to have a similar shape, the optometrist or ophthalmologist will look at the good eye to assess the anatomical predisposition. The unaffected eye has a 14.7% risk of NAION within five years.
A number of uncontrolled single case or small number of patient reports have associated NAION with use of oral erectile dysfunction drugs.
It is estimated that the incidence of AION is about 8,000/year in the U.S.
Hereditary motor and sensory neuropathies are relatively common and are often inherited with other neuromuscular conditions, and these co morbidities cause an accelerated progression of the disease.
Most forms HMSN affects males earlier and more severely than females, but others show no predilection to either sex. HMSN affects all ethnic groups. With the most common forms having no racial prediliections, but other recessively inherited forms tend to impact specific ethnic groups. Onset of HMSN in most common in early childhood, with clinical effects occurring before the age of 10, but some symptoms are lifelong and progress slowly. Therefore, these symptoms do not appear until later in life.
Perioperative PION patients have a higher prevalence of cardiovascular risk factors than in the general population. Documented cardiovascular risks in people affected by perioperative PION include high blood pressure, diabetes mellitus, high levels of cholesterol in the blood, tobacco use, abnormal heart rhythms, stroke, and obesity. Men are also noted to be at higher risk, which is in accordance with the trend, as men are at higher risk of cardiovascular disease. These cardiovascular risks all interfere with adequate blood flow, and also may suggest a contributory role of defective vascular autoregulation.
Hereditary neuropathy with liability to pressure palsy is an autosomal dominant genetic disease (which means one parent must be affected). A mutation in one copy of the gene PMP-22 (Peripheral myelin protein 22, 17p11.2) that makes the peripheral myelin protein causes haploinsufficiency, where the activity of the normal gene is insufficient to compensate for the loss of function of the other gene.
Peripheral Myelin Protein 22 gene encodes a 22-kD protein that comprises 2 to 5% of peripheral nervous system myelin, it is located on chromosome locus 17p12
Overlap with Charcot-Marie-Tooth disease type 1A has been found in "Gly94fsX222 (c.281_282insG)", due to point mutations of PMP 22 that occur in a minority of cases of hereditary neuropathy with liability to pressure palsy. The point mutations -missense, nonsense and splice-site have each been alluded to in HNPP.
Leber hereditary optic neuropathy is a condition related to changes in mitochondrial DNA. Although most DNA is packaged in chromosomes within the nucleus, mitochondria have a distinct mitochondrial genome composed of mtDNA.
Mutations in the MT-ND1, MT-ND4, MT-ND4L, and MT-ND6 genes cause Leber hereditary optic neuropathy. These genes code for the NADH dehydrogenase protein involved in the normal mitochondrial function of oxidative phosphorylation. Oxidative phosphorylation uses a series of four large multienzyme complexes, which are all embedded in the inner mitochondrial membrane to convert oxygen and simple sugars to energy. Mutations in any of the genes disrupt this process to cause a variety of syndromes depending on the type of mutation and other factors. It remains unclear how these genetic changes cause the death of cells in the optic nerve and lead to the specific features of Leber hereditary optic neuropathy.
Optic disc drusen are found clinically in about 1% of the population but this increases to 3.4% in individuals with a family history of ODD. About two thirds to three quarters of clinical cases are bilateral. A necropsy study of 737 cases showed a 2.4% incidence with 2 out of 15 (13%) bilateral, perhaps indicating the insidious nature of many cases. An autosomal dominant inheritance pattern with incomplete penetrance and associated inherited dysplasia of the optic disc and its blood supply is suspected. Males and females are affected at equal rates. Caucasians are the most susceptible ethnic group. Certain conditions have been associated with disc drusen such as retinitis pigmentosa, angioid streaks, Usher syndrome, Noonan syndrome and Alagille syndrome. Optic disc drusen are not related to Bruch membrane drusen of the retina which have been associated with age-related macular degeneration.
Many causes of decreased blood flow during surgery are systemic, i.e. they decrease blood flow throughout the body. Studies have shown that nearly all perioperative PION patients suffered from prolonged periods of low blood pressure during the operation and postoperative anemia. The average perioperative PION patient loses 4 liters of blood during surgery, and the majority receive blood transfusions. Massive blood loss is just one cause of low blood pressure. Medications used for general anesthesia can also lower blood pressure. The average surgery duration in PION cases is 7 to 9 hours, which increases the risk of prolonged low blood pressure.
Other intraoperative ischemic pressures are local, i.e. they decrease blood flow to the affected area, the optic nerve. Facial swelling, periorbital swelling, direct orbital compression, facedown position during surgery, and a tilted operating table in feet-above-head position, have all been reported to be associated with perioperative PION. All of these factors are believed to increase tissue pressure and venous pressure around the optic nerve, thereby decreasing local blood flow and oxygen delivery.
Surgeries with the highest estimated incidence of PION are surgeries with a higher risk of the aforementioned conditions. In spine surgery, patients are susceptible to significant blood loss, and they are positioned face down for long periods of time, which increases venous pressure, decreases arterial perfusion pressure, and often causes facial swelling (increased tissue pressure). Spine surgery is estimated to have the highest incidence of PION, 0.028%. Long duration of feet-above-head position in prostate surgery has also been suggested to increase risk of PION.
Mononeuropathy is a type of neuropathy that only affects a single nerve. Diagnostically, it is important to distinguish it from polyneuropathy because when a single nerve is affected, it is more likely to be due to localized trauma or infection.
The most common cause of mononeuropathy is physical compression of the nerve, known as compression neuropathy. Carpal tunnel syndrome and axillary nerve palsy are examples. Direct injury to a nerve, interruption of its blood supply resulting in (ischemia), or inflammation also may cause mononeuropathy.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
Ischemic optic neuropathy (ION) is the loss of structure and function of a portion of the optic nerve due to obstruction of blood flow to the nerve (i.e. ischemia). Ischemic forms of optic neuropathy are typically classified as either anterior ischemic optic neuropathy or posterior ischemic optic neuropathy according to the part of the optic nerve that is affected. People affected will often complain of a loss of visual acuity and a visual field, the latter of which is usually in the superior or inferior field.
When ION occurs in patients below the age of 50 years old, other causes should be considered. Such as juvenile diabetes mellitus, antiphospholipid antibody-associated clotting disorders, collagen-vascular disease, and migraines. Rarely, complications of intraocular surgery or acute blood loss may cause an ischemic event in the optic nerve.
Anterior ION presents with sudden, painless visual loss developing over hours to days. Examination findings usually include decreased visual acuity, a visual field defect, color vision loss, a relative afferent pupillary defect, and a swollen optic nerve head. Posterior ION occurs arteritic, nonarteritic, and surgical settings. It is characterized by acute vision loss without initial disc edema, but with subsequent optic disc atrophy.
Although there is no recognized treatment that can reverse the visual loss. Upon recent reports, optic nerve health decompression may be beneficial for a select group of patients with a gradual decline in vision due to ION.
Dejerine–Sottas neuropathy is caused by a genetic defect either in the proteins found in axons or the proteins found in myelin. Specifically, it has been associated with mutations in "MPZ", "PMP22", "PRX", and "EGR2" genes. The disorder is inherited in an autosomal dominant or autosomal recessive manner.
Peripheral neuropathy may be classified according to the number and distribution of nerves affected (mononeuropathy, mononeuritis multiplex, or polyneuropathy), the type of nerve fiber predominantly affected (motor, sensory, autonomic), or the process affecting the nerves; e.g., inflammation (neuritis), compression (compression neuropathy), chemotherapy (chemotherapy-induced peripheral neuropathy).
People with MMND become progressively more weak with time. Generally, affected individuals survive up to 30 years after they are diagnosed.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.