Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
This disorder is caused by an abnormality of the TBCE gene, the locus for which is on Chromosome 1q42.3. The locus is a 230 kb region of gene with identified deletions and mutations in affected individuals. There are rare cases of the disorder not being due to a TBCE gene abnormality.
Because MOMO is such a rare disorder, very few studies have been conducted into its causes. Current research suggests that it is linked to a de novo (new) autosomal dominant mutation.
This disorder is present at birth, however, it may not be understood until several years after birth. Acrodysostosis affects males and females in almost similar numbers. It is difficult to determine the frequency of acrodysostosis in the population as many cases of this disorder cannot be diagnosed properly.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
Hennekam syndrome also known as intestinal lymphagiectasia–lymphedema–mental retardation syndrome, is an autosomal recessive disorder consisting of intestinal lymphangiectasia, facial anomalies, peripheral lymphedema, and mild to moderate levels of growth and intellectual disability.
It is also known as "lymphedema-lymphangiectasia-mental retardation syndrome".
In a subset of patients it is associated with CCBE1 according research published by its namesake, Raoul Hennekam. Other causal mutations were found in the FAT4 gene. Previously, mutations in the FAT4 gene had been only associated with van Maldergem syndrome. The molecular mechanism of the lymphedema phenotype in CCBE1-associated cases was identified as a diminished ability of the mutated CCBE1 to accelerate and focus the activation of the primary lymphangiogenic growth factor VEGF-C.
The cause of this condition is unknown but evidence of familial inheritance and sporadic genetic mutation has been linked to cases of FHS. Two possibly familial cases have been reported—one in a mother and son, and the other in a mother and daughter. This suggests an autosomal dominant inheritance but additional cases need to be investigated to establish this. Another report has suggested that the inheritance may be autosomal recessive. In all of these cases, however, the mothers and children were not similarly affected, suggesting a variable clinical expression of the syndrome.
In a study published by the "American Journal of Human Genetics" in 2012, exome sequencing was used to investigate a group of unrelated individuals with classic features of FHS and identified heterozygous mutations in SRCAP as causative of this disorder. Each reported mutation was truncating (nonsense or frameshift) and occurred between codons 2,407 and 2,517 in exon 34, resulting in the loss of three C-terminal AT-hook motifs. SRCAP encodes a SNF2-related chromatin-remodeling ATPase that is a coactivator for CREB-binding protein (or CBP), which is the major cause of Rubinstein–Taybi syndrome. This disrupted interaction between the proteins most likely explains the clinical overlap between FHS and RTS.
- SRCAP has been shown to transduce signals of nuclear (steroid) hormone receptors and Notch pathways, showing that it plays diverse roles in gene expression.
- SRCAP contains several functional domains (SNF2 like ATPase, an N-terminal HSA domain, and three C-terminal AT-hook DNA-binding motifs).
- The CBP interaction domain of SRCAP is located centrally.
Thus, the mechanism of disease in FHS is suspected to be dominant-negative (or antimorphic) due to the mutation in the final exon that results in the loss of the major transactivation function of SRCAP (or loss of one or more critical domains). All of the patients that carried the mutation also had obvious physical symptoms (i.e., prominent nose, delayed bone age, and short stature). Those who tested negative for the mutation often had dysmorphic facial features distinct from classical FHS, as well as a formal diagnosis of autism.
Worldwide, it has been documented in 110 persons, 85 of them Finnish. It is a recessive genetic disease. Many people with Mulibrey nanism have parents who are closely related, consanguine. Signs and symptoms are variable, siblings who suffer this disease sometimes do not share the same symptoms.
Marinesco–Sjögren syndrome (MSS), sometimes spelled Marinescu–Sjögren syndrome, is a rare autosomal recessive disorder.
Cohen syndrome (also known as Pepper syndrome or Cervenka syndrome, named after Michael Cohen, William Pepper and Jaroslav Cervenka, who researched the illness) is a genetic disorder.
Floating–Harbor syndrome, also known as Pelletier–Leisti syndrome, is a rare disease with fewer than 50 cases described in the literature. It is usually diagnosed in early childhood and is characterized by the triad of proportionate short stature with delayed bone age, characteristic facial appearance, and delayed speech development. Although its cause is unknown, it is thought to result from genetic mutation, and diagnosis is established by the presence of a heterozygous SRCAP mutation in those with clinical findings of FHS.
VLDLR-associated cerebellar hypoplasia (VLDLRCH; alternative names: dysequilibrium syndrome, DES; nonprogressive cerebellar disorder with mental retardation) is a rare autosomal recessive condition caused by a disruption of the VLDLR gene. First described as a form of cerebral palsy in the 1970s, it is associated with parental consanguinity and is found in secluded communities, with a number of cases described in Hutterite families.
Sanjad-Sakati syndrome is a rare autosomal recessive genetic condition seen in offspring of Middle Eastern origin. It was first described in Saudi Arabia, but has been seen in Qatari, Kuwaiti, Omani and other children from the Middle East as well as elsewhere. The condition is caused by mutations or deletions in the TBCE gene of Chromosome No.1.
The condition is characterised by a triad of growth and mental retardation, hypoparathyroidism and dysmorphism.
The cause of this condition is apparently due to mutation in the UBE3B gene and is inherited via autosomal recessive manner. This gene is located at molecular location- base pairs 109,477,410 to 109,543,628 and position 24.11 on chromosome 12.
While many cases of HPMRS are caused by mutations in the PIGV gene, there may be genetic heterogeneity in the spectrum of Mabry syndrome as a whole. PIGV is a member of the molecular pathway that synthesizes the glycosylphosphatidylinositol anchor. The loss in PIGV activity results in a reduced anchoring of alkaline phosphatase to the surface membrane and an elevated alkaline phosphatase activity in the serum.
Feingold syndrome is caused by mutations in the neuroblastoma-derived V-myc avian myelocytomatosis viral-related oncogene (MYCN) which is located on the short arm of chromosome 2 (2p24.1).
Oculofaciocardiodental syndrome is a rare X linked genetic disorder.
One family of 68 individuals over 5 generations was studied and the prevalence of disease among the family members suggests that it is indicative of dominant inheritance that is not sexually linked. This is supported by the fact that the disease failed to skip generations even in the absence of intermarriages and that disease incidence was independent of sex. The current findings suggest that the cause of the disease could be narrowed down to one enzymatic defect that is involved in the development of neuroectodermal tissue, however the exact molecular mechanisms are currently unknown. The other symptoms that arise such as bone defects and diabetes may be secondary to this enzymatic defect.
Zimmermann–Laband syndrome (ZLS), also known as Laband–Zimmermann syndrome, and Laband's syndrome, is an extremely rare autosomal dominant congenital disorder.
The mechanism (or pathogenesis) of Kaufman oculocerebrofacial syndrome appears to begin due to a mutation in the E3 ubiquitin protein ligase. (UBE3B).
One finds that the normal mechanism of UBE3B gene is important in the ubiquitin-proteasome system.The aforementioned system helps to remove proteins that have degraded. However, when not working properly due to the mutation in the UBE3B gene(at least 15 mutations) results in an unstable UBE3B protein which has a negative effect on the ubiquitin-proteasome system.
Feingold syndrome (also called oculodigitoesophagoduodenal syndrome) is a rare autosomal dominant hereditary disorder. It is named after Murray Feingold, an American physician who first described the syndrome in 1975. Until 2003, at least 79 patients have been reported worldwide.
In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. Usually by the age of 10 the child needs a wheel chair. Individuals with autosomal recessive cerebellum ataxia usually survive till their 20s; in some cases individuals have survived till their 40s or 50s.
Branchio-oculo-facial syndrome (BOFS) is a disease that arises from a mutation in the TFAP2A gene. It is a rare autosomal dominant disorder that starts to affect a child's development before birth. Symptoms of this condition include skin abnormalities on the neck, deformities of the ears and eyes, and other distinctive facial features such a cleft lip along with slow growth, mental retardation and premature graying of hair.
One case of Cohen Syndrome, in a Palestinian boy from Tul-Karem, was reported in the Israeli monthly Kol Israel BeAsakim (in Hebrew) in the December 2007 issue. Over the past several years there have been approximately 50 new cases worldwide. There are population groups with this condition in Australia, the UK and the US. It still seems to go undiagnosed leaving the number of cases less than 500.
SFMS is an X-linked disease by chromosome Xq13. X-linked diseases map to the human X chromosome because this syndrome is an X chromosome linked females who have two chromosomes are not affected but because males only have one X chromosome, they are more likely to be affected and show the full clinical symptoms. This disease only requires one copy of the abnormal X-linked gene to display the syndrome. Since females have two X chromosomes, the effect of one X chromosome is recessive and the second chromosome masks the affected chromosome.
Affected fathers can never pass this X-linked disease to their sons but affected fathers can pass the X-linked gene to their daughters who has a 50% chance to pass this disease-causing gene to each of her children. Since females who inherit this gene do not show symptoms, they are called carriers. Each of the female's carrier's son has a 50% chance to display the symptoms but none of the female carrier's daughters would display any symptoms.
Some patients with SFMS have been founded to have a mutation of the gene in the ATRX on the X chromosome, also known as the Xq13 location. ATRX is a gene disease that is associated with other forms of X-linked mental retardation like Alpha-thalassemia/mental retardation syndrome, Carpenter syndrome, Juberg-Marsidi syndrome, and soastic paraplegia. It is possible that patients with SFMS have Alpha-thalassemia/mental retardation syndrome without the affected hemoglobin H that leads to Alphathalassemia/ mental retardation syndrome in the traditionally recognized disease.