Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Although HSP is a progressive condition, the prognosis for individuals with HSP varies greatly. It primarily affects the legs although there can be some upperbody involvement in some individuals. Some cases are seriously disabling while others are less disabling and are compatible with a productive and full life. The majority of individuals with HSP have a normal life expectancy.
HSP is a group of genetic disorders. It follows general inheritance rules and can be inherited in an autosomal dominant, autosomal recessive or X-linked recessive manner. The mode of inheritance involved has a direct impact on the chances of inheriting the disorder. Over 70 genotypes had been described, and over 50 genetic loci have been linked to this condition. Ten genes have been identified with autosomal dominant inheritance. One of these SPG4 accounts for ~50% of all genetically solved cases cases, or approximately 25% of all HSP cases. Twelve genes are known to be inherited in an autosomal recessive fashion. Collectively this latter group account for ~1/3 cases.
Most altered genes have known function, but for some the function haven’t been identified yet. All of them are listed in the gene list below, including their mode of inheritance. Some examples are spastin (SPG4) and paraplegin (SPG7) are both AAA ATPases.
In some cases, spastic cerebral palsy is caused by genetic factors.
The genetic factors for spastic cerebral palsy include:
Although it has its origins in a brain injury, spastic CP can largely be thought of as a collection of orthopaedic and neuromuscular issues because of how it manifests symptomatically over the course of the person's lifespan. It is therefore not the same as "brain damage" and it need not be thought of as such. Spastic quadriplegia in particular, especially if it is combined with verbal speech challenges and strabismus, may be misinterpreted by the general population as alluding to cognitive dimensions to the disability atop the physical ones, but this is false; the intelligence of a person with any type of spastic CP is unaffected by the condition "of the spasticity itself".
In spastic cerebral palsy in children with low birth weights, 25% of children had hemiplegia, 37.5% had quadriplegia, and 37.5% had diplegia.
HSAN I constitutes a clinically and genetically heterogeneous group of diseases of low prevalence. Detailed epidemiological data are currently not available. The frequency of the disease is still reflected by reports of a handful affected families. Although the impressive clinical features of HSAN I are seen by neurologists, general practitioners, orthopedists, and dermatologists, the condition might still be under-recognized particularly for sporadic cases and patients who do not exhibit the characteristic clinical features.
Individuals with paraplegia can range in their level of disability, requiring treatments to vary from case to case. From a rehabilitation standpoint, the most important factor is to gain as much functionality and independence back as possible. Physiotherapists spend many hours within a rehabilitation setting working on strength, range of motion/stretching and transfer skills. Wheelchair mobility is also an important skill to learn. Most paraplegics will be dependent on a wheelchair as a mode of transportation. Thus it is extremely important to teach them the basic skills to gain their independence. Activities of daily living (ADLs) can be quite challenging at first for those with a spinal cord injury (SCI). With the aid of physiotherapists and occupational therapists, individuals with an SCI can learn new skills and adapt previous ones to maximize independence, often living independently within the community.
Paraplegia is an impairment in motor or sensory function of the lower extremities. The word comes from Ionic Greek παραπληγίη "half-striking". It is usually caused by spinal cord injury or a congenital condition that affects the neural (brain) elements of the spinal canal. The area of the spinal canal that is affected in paraplegia is either the thoracic, lumbar, or sacral regions. Common victims of this impairment are veterans or members of the armed forces. If four limbs are affected by paralysis, tetraplegia or quadriplegia is the correct term. If only one limb is affected, the correct term is monoplegia.
Spastic paraplegia is a form of paraplegia defined by spasticity of the affected muscles, rather than flaccid paralysis.
The American Spinal Injury Association classifies spinal cord injury severity. ASIA A being the complete loss of sensory function and motor skills below the injury. ASIA B is having some sensory function below the injury, but no motor function. ASIA C some motor function below level of injury, but half the muscles cannot move against gravity. ASIA D, more than half of the muscles below the level of injury can move against gravity. ASIA E which is the restoration of all neurologic function.
In any manifestation of spastic CP, clonus of the affected limb(s) may intermittently result, as well as muscle spasms, each of which results from the pain and/or stress of the tightness experienced, indicating especially hard-working and/or exhausted musculature. The spasticity itself can and usually does also lead to very early onset of muscle-stress symptoms like arthritis and tendinitis, especially in ambulatory individuals in their mid-20s and early-30s. As compared to other types of CP, however, and especially as compared to hypotonic CP or more general paralytic mobility disabilities, spastic CP is typically more easily manageable by the person affected, and medical treatment can be pursued on a multitude of orthopaedic and neurological fronts throughout life.
Physical therapy and occupational therapy regimens of assisted stretching, strengthening, functional tasks, and/or targeted physical activity and exercise are usually the chief ways to keep spastic CP well-managed, although if the spasticity is too much for the person to handle, other remedies may be considered, such as various antispasmodic medications, botox, baclofen, or even a neurosurgery known as a selective dorsal rhizotomy (which eliminates the spasticity by eliminating the nerves causing it).
If patients with HSAN I receive appropriate treatment and counseling, the prognosis is good. Early treatment of foot infections may avoid serious complications. Nevertheless, the complications are manageable, thus allowing an acceptable quality of life. The disease progresses slowly and does not influence the life expectancy if signs and symptoms are properly treated.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
NPCA is a syndrome and can have diverse causes. It has a genetic basis and inheritance is considered to be autosomal recessive. However, autosomal dominant variety has also been reported. There may be familial balanced translocation t(8;20)(p22;q13) involved.
In terms of frequency, is estimated at 2 per 100,000, it has identified in different regions of the world. Some clusters of certain types of autosomal dominant cerebellar ataxia reach a prevalence of 5 per 100,000.
TAA is an old term for a constellation of elements that can lead to a mitochondrial optic neuropathy. The classic patient is a man with a history of heavy alcohol and tobacco consumption. Respectively, this combines nutritional mitochondrial impairment, from vitamin deficiencies (folate and B-12) classically seen in alcoholics, with tobacco-derived products, such as cyanide and ROS. It has been suggested that the additive effect of the cyanide toxicity, ROS, and deficiencies of thiamine, riboflavin, pyridoxine, and b12 result in TAA.
The prevalence of SCA6 varies by culture. In Germany, SCA6 accounts for 10-25% of all autosomal dominant cases of SCA (SCA itself having a prevalence of 1 in 100,000). This prevalence in lower in Japan, however, where SCA6 accounts for only ~6% of spinocerebellar ataxias. In Australia, SCA6 accounts for 30% of spinocerebellar ataxia cases while 11% in the Dutch.
Non-progressive congenital ataxia (NPCA) is a non-progressive form of cerebellar ataxia which can occur with or without cerebellar hypoplasia.
Costeff syndrome, or 3-methylglutaconic aciduria type III, is a genetic disorder caused by mutations in the "OPA3" gene. It is typically associated with the onset of visual deterioration (optic atrophy) in early childhood followed by the development of movement problems and motor disability in later childhood, occasionally along with mild cases of cognitive deficiency. The disorder is named after Hanan Costeff, the doctor who first described the syndrome in 1989.
With so few described cases, establishing the basic pathophysiological mechanisms or genetic abnormalities has not been possible.
Fitzsimmons–Guilbert syndrome is an extremely rare genetic disease characterized by a slowly progressive spastic paraplegia, skeletal anomalies of the hands and feet with brachydactyly type E, cone-shaped epiphyses, abnormal metaphyseal–phalangeal pattern profile, sternal anomaly (pectus carinatum or excavatum), dysarthria, and mild intellectual deficit.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Patients with severe forms of MJD have a life expectancy of approximately 35 years. Those with mild forms have a normal life expectancy. The cause of death of those who die early is often aspiration pneumonia.
Dennie–Marfan syndrome is a syndrome in which there is association of spastic paraplegia of the lower limbs and mental retardation in children with congenital syphilis. Both sexes are affected, and the onset of the disease can be acute or insidious, with slow progression from weakness to quadriplegia. Epilepsy, cataract, and nystagmus may be also be found.
The syndrome was described by Charles Clayton Dennie in 1929, and Antoine Marfan in 1936.
This not known with certainty but is estimated to be about one per million. It appears to be more common in females than males.
A motor neuron disease (MND) is any of several neurological disorders that selectively affect motor neurons, the cells that control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), progressive bulbar palsy (PBP) and pseudobulbar palsy. Spinal muscular atrophies (SMA) are sometimes included in the group by some neurologists but it is different disease with clear genetic cause. They are neurodegenerative in nature and cause increasing disability and eventually, death.
Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.
Degeneration occurs at the cellular level and in certain subtypes results in cellular death. Cellular death or dysfunction causes a break or faulty signal in the line of communication from the central nervous system to target muscles in the body. When there is impaired communication or a lack of communication entirely, the muscles in the body do not function correctly. Muscle control complications can be observed in multiple balance, speech, and motor or movement impairment symptoms. ADCA is divided into three types and further subdivided into subtypes known as SCAs (spinocerebellar ataxias).
An average clinical profile from published studies shows that the median onset age for HDLS patients is 44.3 years with a mean disease duration of 5.8 years and mean age of death at 53.2 years. As of 2012, there have been around 15 cases identified with at least 11 sporadic cases of HDLS. HDLS cases have been located in Germany, Norway, Sweden, and the United States, showing an international distribution focusing between Northern Europe and the United States.
Through the study of numerous kindred, it was found that the disease did not occur among just males or females, but rather was evenly distributed indicative of an autosomal rather than a sex-linked genetic disorder. It was also observed that the HDLS cases did not skip generations as it would occur with a recessive inheritance, and as such has been labeled autosomal dominant.
Infantile convulsions and choreoathetosis (ICCA) syndrome is a neurological genetic disorder with an autosomal dominant mode of inheritance. It is characterized by the association of benign familial infantile epilepsy (BIFE) at age 3–12 months and later in life with paroxysmal kinesigenic choreoathetosis. The ICCA syndrome was first reported in 1997 in four French families from north-western France and provided the first genetic evidence for common mechanisms shared by benign infantile seizures and paroxysmal dyskinesia. The epileptic origin of PKC has long been a matter of debates and PD have been classified as reflex epilepsies.Indeed, attacks of PKC and epileptic seizures have several characteristics in common, they both are paroxysmal in presentation with a tendency to spontaneous remission, and a subset of PKC responds well to anticonvulsants. This genetic disease has been mapped to chromosome 16p-q12. More than 30 families with the clinical characteristics of ICCA syndrome have been described worldwide so far.