Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prevalence of Klippel–Feil syndrome is unknown due to the fact that there was no study done to determine the true prevalence.
Although the actual occurrence for the KFS syndrome is unknown, it is estimated to occur 1 in 40,000 to 42,000 newborns worldwide. In addition, females seem to be affected slightly more often than males.
Genetic genealogy has identified a specific location of a gene on a chromosome for Klippel-Feil Syndrome. Mutations in the GDF6 and GDF3 genes have also been identified to cause the disease, although some people with Klippel–Feil syndrome do not have identified mutations in the GDF6 or GDF3 genes. In this case, the cause of the condition in these individuals is unknown. GDF6 and GDF3 genes provide the body with instructions for making proteins involved in regulating the growth and maturation of bone and cartilage. These proteins actively regulate cell growth in embryonic and adult tissue. GDF6 specifically is involved in the formation of vertebral bones, among others, and establishing boundaries between bones in skeletal development while GDF3 is involved with bone and cartilage growth. Mutations cause reductions in these functional proteins but, it is unclear exactly how a shortage in these proteins leads to incomplete separation of the vertebrae in people with Klippel–Feil syndrome. However, when the GDF6 gene was knocked out in mice, the result was the fusion of bones. Only by identifying the link between the genetic cause and the phenotypic pathoanatomy of Klippel–Feil syndrome will we be able to rationalize the heterogeneity of the syndrome.
These mutations can be inherited in two ways:
- Autosomal dominant inheritance, where one copy of the altered gene in each cell is sufficient to cause the disorder, is especially associated with C2-C3 fusion.
- Autosomal recessive inheritance, where both copies of a gene contain mutations, is especially associated with C5-C6 fusion.
- Another autosomal dominant form (mapped on locus 8q22.2) known as Klippel–Feil syndrome with laryngeal malformation has been identified. It is also known as Segmentation syndrome 1.
In terms of epidemiology, Jackson–Weiss syndrome is a rare genetic disorder; the overall contribution of FGFR mutation to the condition is not clear.
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
Both autosomal dominant and recessive forms of Larsen syndrome have been reported. The former is significantly more common than the latter. Symptoms such as syndactyly, cleft palate, short stature, and cardiac defects are seen more commonly in individuals with the autosomal recessive form of the disorder. A lethal form of the disorder has been reported it is described as being a combination of the Larsen phenotype and pulmonary hypoplasia.
A musculoskeletal abnormality is a disorder of the musculoskeletal system present at birth.
They can be due to deformity or malformation.
An example is Klippel-Feil syndrome.
Although present at birth, some only become obvious postnatally.
The incidence of VACTERL association is estimated to be approximately 1 in 10,000 to 1 in 40,000 live-born infants. It is seen more frequently in infants born to diabetic mothers. While most cases are sporadic, there are clearly families who present with multiple involved members.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Larsen syndrome (LS) is a congenital disorder discovered in 1950 by Larsen and associates when they observed dislocation of the large joints and face anomalies in six of their patients. Patients with Larsen syndrome normally present with a variety of symptoms, including congenital anterior dislocation of the knees, dislocation of the hips and elbows, flattened facial appearance, prominent foreheads, and depressed nasal bridges. Larsen syndrome can also cause a variety of cardiovascular and orthopedic abnormalities. This rare disorder is caused by a genetic defect in the gene encoding filamin B, a cytoplasmic protein that is important in regulating the structure and activity of the cytoskeleton. The gene that influences the emergence of Larsen syndrome is found in chromosome region, 3p21.1-14.1, a region containing human type VII collagen gene. Larsen syndrome has recently been described as a mesenchyme disorder that affects the connective tissue of an individual. Autosomal dominant and recessive forms of the disorder have been reported, although most cases are autosomal dominant. Reports have found that in Western societies, Larsen syndrome can be found in one in every 100,000 births, but this is most likely an underestimate because the disorder is frequently unrecognized or misdiagnosed.
Ischiopatellar dysplasia is often considered a familial condition. Ischiopatellar dysplasia has been identified on region 5.6 cM on chromosome 17q22. Mutations in the TBX4 (T-box protein 4) gene have been found to cause ischiopatellar dysplasia due to the essential role TBX4 plays in lower limb development since TBX4 is a transcription factor.
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.
Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet.
Medical conditions include frequent ear infection, hearing loss, hypotonia, developmental problems, respiratory problems, eating difficulties, light sensitivity, and esophageal reflux.
Data on fertility and the development of secondary sex characteristics is relatively sparse. It has been reported that both male and female patients have had children. Males who have reproduced have all had the autosomal dominant form of the disorder; the fertility of those with the recessive variant is unknown.
Researchers have also reported abnormalities in the renal tract of affected patients. Hydronephrosis is a relatively common condition, and researchers have theorized that this may lead to urinary tract infections. In addition, a number of patients have suffered from cystic dysplasia of the kidney.
A number of other conditions are often associated with Robinow syndrome. About 15% of reported patients suffer from congenital heart defects. Though there is no clear pattern, the most common conditions include pulmonary stenosis and atresia. In addition, though intelligence is generally normal, around 15% of patients show developmental delays.
The exact cause of the condition is unknown. In some cases, close family members may share this condition. In other cases, no other related persons have this condition. The scientific name for the condition is syndactyly, although this term covers both webbed fingers and webbed toes. Syndactyly occurs when apoptosis or programmed cell death during gestation is absent or incomplete. Webbed toes occur most commonly in the following circumstances:
- Syndactyly or Familial Syndactyly
- Down syndrome
It is also associated with a number of rare conditions, notably:
- Aarskog–Scott syndrome
- Acrocallosal syndrome
- Apert's syndrome
- Bardet-Biedl syndrome
- Carpenter syndrome
- Cornelia de Lange syndrome
- Edwards syndrome
- Jackson–Weiss syndrome
- Fetal hydantoin syndrome
- Miller syndrome
- Pfeiffer syndrome
- Smith-Lemli-Opitz syndrome
- Timothy syndrome
- Ectodermal Dysplasia
- Klippel-Feil Syndrome
Nager acrofacial dysostosis is a genetic congenital anomaly syndrome. Nager syndrome displays several or all of the following characteristics: underdevelopment of the cheek and jaw area, down-sloping of the opening of the eyes, lack or absence of the lower eyelashes, kidney or stomach reflux, hammer toes, shortened soft palate, lack of development of the internal and external ear, possible cleft palate, underdevelopment or absence of the thumb, hearing loss (see hearing loss with craniofacial syndromes) and shortened forearms, as well as poor movement in the elbow, and may be characterized by accessory tragi. Occasionally, affected individuals develop vertebral anomalies such as scoliosis. The inheritance pattern is said to be autosomal but there are arguments as to whether it is autosomal dominant or autosomal recessive. Most cases tend to be sporadic. Nager syndrome is also linked to five other similar syndromes: Miller syndrome, Treacher Collins, Pierre Robin, Genee-Wiedemann, and Franceschetti-Zwahlen-Klein.
Camptodactyly is a medical condition that causes one or more fingers to be permanently bent. It involves fixed flexion deformity of the proximal interphalangeal joints. The fifth finger is always affected.
Camptodactyly can be caused by a genetic disorder. In that case, it is an autosomal dominant trait that is known for its incomplete genetic expressivity. This means that when a person has the genes for it, the condition may appear in both hands, one, or neither. A linkage scan proposed that the chromosomal locus of camptodactyly was 3q11.2-q13.12.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Robinow syndrome is an extremely rare genetic disorder characterized by short-limbed dwarfism, abnormalities in the head, face, and external genitalia, as well as vertebral segmentation. The disorder was first described in 1969 by human geneticist Meinhard Robinow, along with physicians Frederic N. Silverman and Hugo D. Smith, in the "American Journal of Diseases of Children". By 2002, over 100 cases had been documented and introduced into medical literature.
Two forms of the disorder exist, dominant and recessive, of which the former is more common. Patients with the dominant version often suffer moderately from the aforementioned symptoms. Recessive cases, on the other hand, are usually more physically marked, and individuals may exhibit more skeletal abnormalities. The recessive form is particularly frequent in Turkey. However, this can likely be explained by a common ancestor, as these patients' families can be traced to a single town in Eastern Turkey. Clusters of the autosomal recessive form have also been documented in Oman and Czechoslovakia.
The syndrome is also known as Robinow-Silverman-Smith syndrome, Robinow dwarfism, fetal face, fetal face syndrome, fetal facies syndrome, acral dysostosis with facial and genital abnormalities, or mesomelic dwarfism-small genitalia syndrome. The recessive form was previously known as Covesdem syndrome.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
Wildervanck syndrome or cervico-oculo-acoustic syndrome comprises a triad of:
- Duane syndrome
- Klippel-Feil anomaly (fused cervical vertebrae)
- congenital hearing loss
The birth defect affects men and women equally, and is not limited to any racial group. It is not certain if it is genetic in nature, although testing is ongoing. There is some evidence that it may be associated with a translocation at t(8;14)(q22.3;q13). Some researchers have suggested AGGF1 has an association.
While some reports suggest Gordon syndrome may be inherited in an X-linked dominant manner, most agree that it is inherited in an autosomal dominant manner with reduced expressivity and incomplete penetrance in females.
In autosomal dominant inheritance, having only one mutated copy of the disease-causing gene in each cell is sufficient to cause signs and symptoms of the condition. When an individual with an autosomal dominant condition has children, each child has a 50% (1 in 2) risk to inherit the mutated copy of the gene.
If a condition shows variable or reduced expressivity, it means that there can be a range in the nature and severity of signs and symptoms among affected individuals. Incomplete penetrance means that a portion of the individuals who carry the mutated copy of the disease-causing gene will not have any features of the condition.
Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal dominant disorder characterized by cleft palate and congenital contractures of the hands and feet.