Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause is generally either paraneoplastic syndrome or idiopathic. In idiopathic AAG, the body's own immune system damages a receptor in the autonomic ganglia, which is part of a peripheral nerve fibre. If the AAG is paraneoplastic, they have a form of cancer, and their immune system has produced paraneoplastic antibodies in response to the cancer.
Where an underlying neoplasm is the cause, treatment of this condition is indicated in order to reduce progression of symptoms. For cases without a known cause, treatment involves suppression of the immune system with corticosteroid treatment, intravenous immunoglobulin, immunosuppressive agents like Rituximab, Cellcept, or Imuran or plasmapheresis.
The prognosis of dysautonomia depends on several factors; individuals with chronic, progressive, generalized dysautonomia in the setting of central nervous system degeneration such as Parkinson's disease or multiple system atrophy have a generally poorer long-term prognosis. Consequently, dysautonomia could be fatal due to pneumonia, acute respiratory failure, or sudden cardiopulmonary arrest.
Autonomic dysfunction symptoms such as orthostatic hypotension, gastroparesis, and gustatory sweating are more frequently identified in mortalities.
A person's sex also seems to have some role in the development of autoimmunity; that is, most autoimmune diseases are "sex-related". Nearly 75% of the more than 23.5 million Americans who suffer from autoimmune disease are women, although it is less-frequently acknowledged that millions of men also suffer from these diseases. According to the American Autoimmune Related Diseases Association (AARDA), autoimmune diseases that develop in men tend to be more severe. A few autoimmune diseases that men are just as or more likely to develop as women include: ankylosing spondylitis, type 1 diabetes mellitus, granulomatosis with polyangiitis, Crohn's disease, Primary sclerosing cholangitis and psoriasis.
The reasons for the sex role in autoimmunity vary. Women appear to generally mount larger inflammatory responses than men when their immune systems are triggered, increasing the risk of autoimmunity. Involvement of sex steroids is indicated by that many autoimmune diseases tend to fluctuate in accordance with hormonal changes, for example: during pregnancy, in the menstrual cycle, or when using oral contraception. A history of pregnancy also appears to leave a persistent increased risk for autoimmune disease. It has been suggested that the slight, direct exchange of cells between mothers and their children during pregnancy may induce autoimmunity. This would tip the gender balance in the direction of the female.
Another theory suggests the female high tendency to get autoimmunity is due to an imbalanced X chromosome inactivation. The X-inactivation skew theory, proposed by Princeton University's Jeff Stewart, has recently been confirmed experimentally in scleroderma and autoimmune thyroiditis. Other complex X-linked genetic susceptibility mechanisms are proposed and under investigation.
Many health conditions can cause autonomic neuropathy. Some common causes of autonomic neuropathy include:
- Diabetes, which is the most common cause of autonomic neuropathy, can gradually cause nerve damage throughout the body.
- Injury to nerves caused by surgery or radiation to the neck.
- Treatment with certain medications, including some drugs used in cancer chemotherapy.
- Abnormal protein buildup in organs (amyloidosis), which affects the organs and the nervous system.
- Other chronic illnesses, such as Parkinson's disease, multiple sclerosis and some types of dementia.
- Autonomic neuropathy may also be caused by an abnormal attack by the immune system that occurs as a result of some cancers (paraneoplastic syndrome).
- Certain infectious diseases. Some viruses and bacteria, such as botulism, Lyme disease and HIV, can cause autonomic neuropathy.
- Inherited disorders. Certain hereditary disorders can cause autonomic neuropathy.
- Autoimmune diseases, in which the immune system attacks and damages parts of the body, including the nerves. Examples include Sjogren's syndrome, systemic lupus erythematosus, rheumatoid arthritis and celiac disease. Guillain-Barre syndrome is an autoimmune disease that happens rapidly and can affect autonomic nerves.
LEMS is often associated with lung cancer (50–70%), specifically small-cell carcinoma, making LEMS a paraneoplastic syndrome. Of the people with small-cell lung cancer, 1–3% have LEMS. In most of these cases, LEMS is the first symptom of the lung cancer, and it is otherwise asymptomatic.
LEMS may also be associated with autoimmune diseases, such as hypothyroidism (an underactive thyroid gland) or diabetes mellitus type 1. Myasthenia gravis, too, may happen in the presence of tumors (thymoma, a tumor of the thymus in the chest); people with MG without a tumor and people with LEMS without a tumor have similar genetic variations that seem to predispose them to these diseases. HLA-DR3-B8 (an HLA subtype), in particular, seems to predispose to LEMS.
Lambert–Eaton myasthenic syndrome (LEMS) is a rare autoimmune disorder characterized by muscle weakness of the limbs. It is the result of an autoimmune reaction in which antibodies are formed against presynaptic voltage-gated calcium channels, and likely other nerve terminal proteins, in the neuromuscular junction (the connection between nerves and the muscle that they supply). The prevalence is 3.4 cases per million. Around 60% of those with LEMS have an underlying malignancy, most commonly small-cell lung cancer; it is therefore regarded as a paraneoplastic syndrome (a condition that arises as a result of cancer elsewhere in the body).
LEMS usually occurs in people over 40 years of age, but may occur at any age. The diagnosis is usually confirmed with electromyography and blood tests; these also distinguish it from myasthenia gravis, a related autoimmune neuromuscular disease.
If the disease is associated with cancer, direct treatment of the cancer often relieves the symptoms of LEMS. Other treatments often used are steroids, azathioprine, which suppress the immune system, intravenous immunoglobulin, which outcompetes autoreactive antibody for Fc receptors, and pyridostigmine and 3,4-diaminopyridine, which enhance the neuromuscular transmission. Occasionally, plasma exchange is required to remove the antibodies.
Prognosis is poor, however, current analysis suggests that those associated with thymoma, benign or malignant, show a less favorable prognosis (CASPR2 Ab positive).
According to the hygiene hypothesis, high levels of cleanliness expose children to fewer antigens than in the past, causing their immune systems to become overactive and more likely to misidentify own tissues as foreign, resulting in autoimmune conditions such as asthma.
Pyridostigmine is a pharmaceutical treatment option for patients with AGID.
In severe cases patients with AGID are required to abandon eating foods, requiring them to get nourishment through a process called Parenteral nutrition, where the patient is fed via a permanent IV and the liquid nourishment is infused directly in the blood stream, as opposed to a feeding tube.
The number of new cases a year is unknown. According to the California Encephalitis Project, the disease has a higher incidence than its individual viral counterparts in patients younger than 30. The largest case series to date characterized 577 patients with anti-NMDA receptor encephalitis. The epidemiological data were limited, but this study provides the best approximation of disease distribution. It found that women are disproportionally affected, with 81% of cases reported in female patients. Disease onset is skewed toward children, with a median age of diagnosis of 21 years. Over a third of cases were children, while only 5% of cases were patients over the age of 45. This same review found that 394 out of 501 patients (79%) had a good outcome by 24 months. 30 patients (6%) died, and the rest were left with mild to severe deficits. The study also confirmed that patients with the condition are more likely to be of Asian or African origin.
Autoimmune gastrointestinal dysmotility (AGID) is an autoimmune disease autonomic neuropathy affecting the gastrointestinal organs and digestive system of the body. Dysmotility is when the strength or coordination of the esophagus, stomach or intestines muscles do not work as they should.
Most common cause of autoimmune encephalitis after acute demyelinating encephalitis in England. More than 500 cases have been reported in literature till 2013. In California Encephalitis Project it was found >4 times as frequently as herpes simplex virus type 1 (HSV-1), varicella-zoster virus (VZV), and West Nile virus (WNV). Among patients with first-onset schizophrenia incidence varies between 6–10%.
- Age – frequently 5–76 years, Median age of patients was 23 years
- Sex – 80% Female
An interesting inverse relationship exists between infectious diseases and autoimmune diseases. In areas where multiple infectious diseases are endemic, autoimmune diseases are quite rarely seen. The reverse, to some extent, seems to hold true. The hygiene hypothesis attributes these correlations to the immune manipulating strategies of pathogens. While such an observation has been variously termed as spurious and ineffective, according to some studies, parasite infection is associated with reduced activity of autoimmune disease.
The putative mechanism is that the parasite attenuates the host immune response in order to protect itself. This may provide a serendipitous benefit to a host that also suffers from autoimmune disease. The details of parasite immune modulation are not yet known, but may include secretion of anti-inflammatory agents or interference with the host immune signaling.
A paradoxical observation has been the strong association of certain microbial organisms with autoimmune diseases.
For example, "Klebsiella pneumoniae" and coxsackievirus B have been strongly correlated with ankylosing spondylitis and diabetes mellitus type 1, respectively. This has been explained by the tendency of the infecting organism to produce super-antigens that are capable of polyclonal activation of B-lymphocytes, and production of large amounts of antibodies of varying specificities, some of which may be self-reactive (see below).
Certain chemical agents and drugs can also be associated with the genesis of autoimmune conditions, or conditions that simulate autoimmune diseases. The most striking of these is the drug-induced lupus erythematosus. Usually, withdrawal of the offending drug cures the symptoms in a patient.
Cigarette smoking is now established as a major risk factor for both incidence and severity of rheumatoid arthritis. This may relate to abnormal citrullination of proteins, since the effects of smoking correlate with the presence of antibodies to citrullinated peptides.
In one case, a patient was diagnosed with both Morvan's syndrome and pulmonary hyalinizing granulomas (PHG). PHG are rare fibrosing lesions of the lung, which have central whorled deposits of lamellar collagen. How these two diseases relate to one another is still unclear.
Thymoma, prostate adenoma, and in situ carcinoma of the sigmoid colon have also been found in patients with Morvan’s Syndrome.
Dysautonomia may be due to inherited or degenerative neurologic diseases (primary dysautonomia) or it may occur due to injury of the autonomic nervous system from an acquired disorder (secondary dysautonomia). The most common causes of dysautonomia include
In the sympathetic nervous system (SNS), predominant dysautonomia is common along with fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis, raising the possibility that such dysautonomia could be their common clustering underlying pathogenesis.
In addition to sometimes being a symptom of dysautonomia, anxiety can sometimes physically manifest symptoms resembling autonomic dysfunction. A thorough investigation ruling out physiological causes is crucial, but in cases where relevant tests are performed and no causes are found or symptoms do not match any known disorders, a primary anxiety disorder is possible, but should not be presumed. For such patients, the anxiety sensitivity index may have better predictivity for anxiety disorders, while the Beck anxiety inventory may misleadingly suggest anxiety for patients with dysautonomia.
Antibodies against voltage-gated potassium channels (VGKC), which are detectable in about 40% of patients with acquired neuromytonia, have been implicated in Morvan’s pathophysiology. Raised serum levels of antibodies to VGKCs have been reported in three patients with Morvan’s Syndrome. Binding of serum from a patient with Morvan’s Syndrome to the hippocampus in a similar pattern of antibodies to known VGKC suggest that these antibodies can also cause CNS dysfunction. Additional antibodies against neuromuscular junction channels and receptors have also been described. Experimental evidence exists that these anti-VGKC antibodies cause nerve hyperexcitability by suppression of voltage gated K+ outward currents, whereas other, yet undefined humoral factors have been implicated in anti-VGKC antibody negative neuromyotonia. It is believed that antibodies to the Shaker-type K+ channels (the Kv1 family) are the type of potassium channel most strongly associated with acquired neuromyotonia and Morvan’s Syndrome.
Whether VGKC antibodies play a pathogenic role in the encephalopathy as they do in the peripheral nervous system is as yet unclear. It has been suggested that the VGKC antibodies may cross the blood–brain barrier and act centrally, binding predominantly to thalamic and striatal neurons causing encephalopathic and autonomic features.
The first estimate of US prevalence for autoimmune diseases as a group was published in 1997 by Jacobson, et al. They reported US prevalence to be around 9 million, applying prevalence estimates for 24 diseases to a US population of 279 million. Jacobson's work was updated by Hayter & Cook in 2012. This study used Witebsky's postulates, as revised by Rose & Bona, to extend the list to 81 diseases and estimated overall cumulative US prevalence for the 81 autoimmune diseases at 5.0%, with 3.0% for males and 7.1% for females. The estimated community
prevalence, which takes into account the observation that many people have more than one autoimmune disease, was 4.5% overall, with 2.7% for males and 6.4% for females.
Autoimmune polyendocrine syndromes (APS) occur when more than one autoimmune disease occurs in endocrine glands. These syndromes are also called Polyendocrine Autoimmune Disorders. In Type 3, autoimmune thyroiditis and another endocrine autoimmune disease are present, but the adrenal cortex is not involved.
In children, most cases are associated with neuroblastoma and most of the others are suspected to be associated with a low-grade neuroblastoma that spontaneously regressed before detection. In adults, most cases are associated with breast carcinoma or small-cell lung carcinoma. It is one of the few paraneoplastic (meaning 'indirectly caused by cancer') syndromes that occurs in both children and adults, although the mechanism of immune dysfunction underlying the adult syndrome is probably quite different.
It is hypothesized that a viral infection (perhaps St. Louis encephalitis, Epstein-Barr, Coxsackie B, enterovirus, or just a flu) causes the remaining cases, though a direct connection has not been proven, or in some cases Lyme disease.
OMS is not generally considered an infectious disease. OMS is not passed on genetically.
Autoimmune polyendocrine syndrome type 1 is a condition caused in an autosomal recessive manner. Furthermore, it is due to a defect in AIRE gene (which helps to make a protein that is called the autoimmune regulator) mapped to 21q22.3 chromosome location, hence chromosome 21.
Acquired idiopathic generalized anhidrosis (AIGA) is characterized by generalized absence of sweating without other autonomic and neurologic dysfunction.
AIGA is classified into 3 subgroups: idiopathic pure sudomotor failure (IPSF), sweat gland failure (SGF), and sudomotor neuropathy, with each subgroup presenting a different pathogenesis.
Primary autonomic failure (also called primary dysautonomia) refers to a category of dysautonomias -- conditions in which the autonomic nervous system does not function properly.
In primary dysautonomias, the autonomic dysfunction occurs as a primary condition (as opposed to resulting from another disease). Autonomic failure is categorized as "primary" when believed to result from a chronic condition characterized by degeneration of the autonomic nervous system, or where autonomic failure is the predominant symptom and its cause is unknown.
Such "primary" dysautonomias are distinguished from secondary dysautonomias, where the dysfunction of the autonomic nervous system is believed to be caused by another disease (e.g. diabetes).
Diseases categorized as primary autonomic failure usually include pure autonomic failure and multiple system atrophy. Many scientists also categorize Parkinson disease and familial dysautonomia as "primary".
In autoimmune polyendocrine syndrome type 1 mechanism one finds that the maintenance of "immunological tolerance" plays a role. Furthermore, upon looking at the AIRE gene, one finds at least 90 mutations in the gene, in those affected with this condition.
Autoimmune polyendocrine syndrome type 1 mechanism also indicates that affected individuals autoantibodies have considerable reactions with both interferon-omega and interferon alpha.
Two thirds of people with Guillain–Barré syndrome have experienced an infection before the onset of the condition. Most commonly these are episodes of gastroenteritis or a respiratory tract infection. In many cases, the exact nature of the infection can be confirmed. Approximately 30% of cases are provoked by "Campylobacter jejuni" bacteria, which cause diarrhea. A further 10% are attributable to cytomegalovirus (CMV, HHV-5). Despite this, only very few people with "Campylobacter" or CMV infections develop Guillain–Barré syndrome (0.25–0.65 per 1000 and 0.6–2.2 per 1000 episodes, respectively). The strain of "Campylobacter" involved may determine the risk of GBS; different forms of the bacteria have different lipopolysaccharides on their surface, and some may induce illness (see below) while others will not.
Links between other infections and GBS are less certain. Two other herpesviruses (Epstein–Barr virus/HHV-4 and varicella zoster virus/HHV-3) and the bacterium "Mycoplasma pneumoniae" have been associated with GBS. The tropical viral infection dengue fever and Zika virus have also been associated with episodes of GBS. Previous hepatitis E virus infection has been found to be more common in people with Guillain–Barré syndrome.
Some cases may be triggered by the influenza virus and potentially influenza vaccine. An increased incidence of Guillain–Barré syndrome followed influenza immunization that followed the 1976 swine flu outbreak (H1N1 A/NJ/76); 8.8 cases per million recipients developed the complication. Since then, close monitoring of cases attributable to vaccination has demonstrated that influenza itself can induce GBS. Small increases in incidence have been observed in subsequent vaccination campaigns, but not to the same extent. The 2009 flu pandemic vaccine (against pandemic swine flu virus H1N1/PDM09) did not cause a significant increase in cases. It is considered that the benefits of vaccination in preventing influenza outweigh the small risks of GBS after vaccination. Even those who have previously experienced Guillain–Barré syndrome are considered safe to receive the vaccine in the future. Other vaccines, such as those against poliomyelitis, tetanus or measles, have not been associated with a risk of GBS.