Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Peripheral Myelin Protein 22 gene encodes a 22-kD protein that comprises 2 to 5% of peripheral nervous system myelin, it is located on chromosome locus 17p12
Overlap with Charcot-Marie-Tooth disease type 1A has been found in "Gly94fsX222 (c.281_282insG)", due to point mutations of PMP 22 that occur in a minority of cases of hereditary neuropathy with liability to pressure palsy. The point mutations -missense, nonsense and splice-site have each been alluded to in HNPP.
Hereditary neuropathy with liability to pressure palsy is an autosomal dominant genetic disease (which means one parent must be affected). A mutation in one copy of the gene PMP-22 (Peripheral myelin protein 22, 17p11.2) that makes the peripheral myelin protein causes haploinsufficiency, where the activity of the normal gene is insufficient to compensate for the loss of function of the other gene.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.
There are many possible causes of small fiber neuropathy. The most common cause is diabetes or glucose intolerance. Other possible causes include hypothyroidism, Sjögren's syndrome, Lupus, vasculitis, sarcoidosis, nutritional deficiency, Celiac disease, Lyme disease, HIV, Fabry disease, amyloidosis and alcoholism. A 2008 study reported that in approximately 40% of patients no cause could be determined after initial evaluation. When no cause can be identified, the neuropathy is called idiopathic. A recent study revealed dysfunction of a particular sodium channel (Nav1.7) in a significant portion of the patient population with an idiopathic small fiber neuropathy.
Recently several studies have suggested an association between autonomic small fiber neuropathy and postural orthostatic tachycardia syndrome. Other notable studies have shown a link between erythromelalgia, and fibromyalgia.
SFN is a common feature in adults with Ehlers-Danlos Syndrome (EDS). Skin biopsy could be considered an additional diagnostic tool to investigate pain manifestations in EDS.
Hereditary motor and sensory neuropathies are relatively common and are often inherited with other neuromuscular conditions, and these co morbidities cause an accelerated progression of the disease.
Most forms HMSN affects males earlier and more severely than females, but others show no predilection to either sex. HMSN affects all ethnic groups. With the most common forms having no racial prediliections, but other recessively inherited forms tend to impact specific ethnic groups. Onset of HMSN in most common in early childhood, with clinical effects occurring before the age of 10, but some symptoms are lifelong and progress slowly. Therefore, these symptoms do not appear until later in life.
Hereditary sensory and autonomic neuropathy (HSAN) or hereditary sensory neuropathy (HSN) is a condition used to describe any of the types of this disease which inhibit sensation.
They are less common than Charcot-Marie-Tooth disease.
Mononeuropathy is a type of neuropathy that only affects a single nerve. Diagnostically, it is important to distinguish it from polyneuropathy because when a single nerve is affected, it is more likely to be due to localized trauma or infection.
The most common cause of mononeuropathy is physical compression of the nerve, known as compression neuropathy. Carpal tunnel syndrome and axillary nerve palsy are examples. Direct injury to a nerve, interruption of its blood supply resulting in (ischemia), or inflammation also may cause mononeuropathy.
Many health conditions can cause autonomic neuropathy. Some common causes of autonomic neuropathy include:
- Diabetes, which is the most common cause of autonomic neuropathy, can gradually cause nerve damage throughout the body.
- Injury to nerves caused by surgery or radiation to the neck.
- Treatment with certain medications, including some drugs used in cancer chemotherapy.
- Abnormal protein buildup in organs (amyloidosis), which affects the organs and the nervous system.
- Other chronic illnesses, such as Parkinson's disease, multiple sclerosis and some types of dementia.
- Autonomic neuropathy may also be caused by an abnormal attack by the immune system that occurs as a result of some cancers (paraneoplastic syndrome).
- Certain infectious diseases. Some viruses and bacteria, such as botulism, Lyme disease and HIV, can cause autonomic neuropathy.
- Inherited disorders. Certain hereditary disorders can cause autonomic neuropathy.
- Autoimmune diseases, in which the immune system attacks and damages parts of the body, including the nerves. Examples include Sjogren's syndrome, systemic lupus erythematosus, rheumatoid arthritis and celiac disease. Guillain-Barre syndrome is an autoimmune disease that happens rapidly and can affect autonomic nerves.
The causes of polyneuropathy can be divided into hereditary and acquired and are therefore as follows:
- "Inherited" -are hereditary motor neuropathies, Charcot–Marie–Tooth disease, and hereditary neuropathy with liability to pressure palsy
- "Acquired" -are diabetes mellitus, vascular neuropathy, alcohol abuse, and Vitamin B12 deficiency
Interleukin-6 prevented peripheral nerve damage in animals without inhibiting the anti-cancer effect.
The severity of symptoms vary widely even for the same type of CMT. There have been cases of monozygotic twins with varying levels of disease severity, showing that identical genotypes are associated with different levels of severity (see penetrance). Some patients are able to live a normal life and are almost or entirely asymptomatic. A 2007 review stated that "Life expectancy is not known to be altered in the majority of cases".
Small fiber peripheral neuropathy is a type of peripheral neuropathy that occurs from damage to the small unmyelinated peripheral nerve fibers. These fibers, categorized as C fibers, are present in skin, peripheral nerves, and organs. The role of these nerves is to innervate the skin ("somatic fibers") and help control autonomic function ("autonomic fibers"). It is estimated that 15-20 million people in the United States suffer from some form of peripheral neuropathy.
Globally diabetic neuropathy affects approximately 132 million people as of 2010 (1.9% of the population).
Diabetes is the leading known cause of neuropathy in developed countries, and neuropathy is the most common complication and greatest source of morbidity and mortality in diabetes. It is estimated that neuropathy affects 25% of people with diabetes. Diabetic neuropathy is implicated in 50–75% of nontraumatic amputations.
The main risk factor for diabetic neuropathy is hyperglycemia. In the DCCT (Diabetes Control and Complications Trial, 1995) study, the annual incidence of neuropathy was 2% per year but dropped to 0.56% with intensive treatment of Type 1 diabetics. The progression of neuropathy is dependent on the degree of glycemic control in both Type 1 and Type 2 diabetes. Duration of diabetes, age, cigarette smoking, hypertension, height, and hyperlipidemia are also risk factors for diabetic neuropathy.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
Peripheral neuropathy may be classified according to the number and distribution of nerves affected (mononeuropathy, mononeuritis multiplex, or polyneuropathy), the type of nerve fiber predominantly affected (motor, sensory, autonomic), or the process affecting the nerves; e.g., inflammation (neuritis), compression (compression neuropathy), chemotherapy (chemotherapy-induced peripheral neuropathy).
The mechanisms of diabetic neuropathy are poorly understood. At present, treatment alleviates pain and can control some associated symptoms, but the process is generally progressive.
As a complication, there is an increased risk of injury to the feet because of loss of sensation (see diabetic foot). Small infections can progress to ulceration and this may require amputation.
Polyneuropathies may be classified in different ways, such as by "cause", by "presentation", or by "classes" of polyneuropathy, in terms of which part of the nerve cell is affected mainly: the axon, the myelin sheath, or the cell body.
- Distal axonopathy, is the result of interrupted function of the peripheral nerves. It is the most common response of neurons to metabolic or toxic disturbances, and may be caused by metabolic diseases such as diabetes, kidney failure, connective tissue disease, deficiency syndromes such as malnutrition and alcoholism, or the effects of toxins or drugs such as chemotherapy. They may be divided according to the type of axon affected (large-fiber, small-fiber, or both), the most distal portions of axons are usually the first to degenerate, and axonal atrophy advances slowly toward the nerve's cell body, however if the cause is removed, regeneration is possible, although the prognosis depends on the duration and severity of the stimulus. People with distal axonopathies usually present with sensorimotor disturbances such as amyotrophic lateral sclerosis
- Myelinopathy, is due to a loss of myelin or of the Schwann cells. This demyelination slows down or completely blocks the conduction of action potentials through the axon of the nerve cell(neuraplaxia). The most common cause is acute inflammatory demyelinating polyneuropathy AIDP, the most common form of Guillain–Barré syndrome(although other causes include chronic inflammatory demyelinating polyneuropathy )
- Neuronopathy is the result of issues in the peripheral nervous system (PNS) neurons. They may be caused by motor neurone diseases, sensory neuronopathies, toxins, or autonomic dysfunction. Neurotoxins such as chemotherapy agents may cause neuronopathies.
HSAN I constitutes a clinically and genetically heterogeneous group of diseases of low prevalence. Detailed epidemiological data are currently not available. The frequency of the disease is still reflected by reports of a handful affected families. Although the impressive clinical features of HSAN I are seen by neurologists, general practitioners, orthopedists, and dermatologists, the condition might still be under-recognized particularly for sporadic cases and patients who do not exhibit the characteristic clinical features.
All hereditary motor and sensory neuropathies are inherited. Chromosomes 17 and 1 seem to be the most common chromosomes with mutations. The disease can be inherited in an autosomal dominant, autosomal recessive or X-linked manner.
The anticonvulsant valproate, an effective treatment for diabetic neuropathy, appeared to offer some protection against cisplatin-induced neuropathy in rats.
TAA is an old term for a constellation of elements that can lead to a mitochondrial optic neuropathy. The classic patient is a man with a history of heavy alcohol and tobacco consumption. Respectively, this combines nutritional mitochondrial impairment, from vitamin deficiencies (folate and B-12) classically seen in alcoholics, with tobacco-derived products, such as cyanide and ROS. It has been suggested that the additive effect of the cyanide toxicity, ROS, and deficiencies of thiamine, riboflavin, pyridoxine, and b12 result in TAA.
In terms of the prognosis of ulnar neuropathy early decompression of the nerve sees a return to normal ability (function). which should be immediate.Severe cubital tunnel syndrome tends to have a faster recovery process in individuals below the age of 70, as opposed to those above such an age. Finally, revisional surgery for cubital tunnel syndrome does not result well for those individuals over 50 years of age.
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.
Autonomic neuropathy (also AN or AAN) is a form of polyneuropathy that affects the non-voluntary, non-sensory nervous system (i.e., the autonomic nervous system), affecting mostly the internal organs such as the bladder muscles, the cardiovascular system, the digestive tract, and the genital organs. These nerves are not under a person's conscious control and function automatically. Autonomic nerve fibers form large collections in the thorax, abdomen, and pelvis outside the spinal cord. They have connections with the spinal cord and ultimately the brain, however. Most commonly autonomic neuropathy is seen in persons with long-standing diabetes mellitus type 1 and 2. In most—but not all—cases, autonomic neuropathy occurs alongside other forms of neuropathy, such as sensory neuropathy.
Autonomic neuropathy is one cause of malfunction of the autonomic nervous system (referred to as dysautonomia), but not the only one; some conditions affecting the brain or spinal cord also may cause autonomic dysfunction, such as multiple system atrophy, and therefore, may cause similar symptoms to autonomic neuropathy.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.