Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Exercise in middle age may reduce the risk of Parkinson's disease later in life. Caffeine also appears protective with a greater decrease in risk occurring with a larger intake of caffeinated beverages such as coffee. People who smoke cigarettes or use smokeless tobacco are less likely than non-smokers to develop PD, and the more they have used tobacco, the less likely they are to develop PD. It is not known what underlies this effect. Tobacco use may actually protect against PD, or it may be that an unknown factor both increases the risk of PD and causes an aversion to tobacco or makes it easier to quit using tobacco.
Antioxidants, such as vitamins C and E, have been proposed to protect against the disease, but results of studies have been contradictory and no positive effect has been proven. The results regarding fat and fatty acids have been contradictory, with various studies reporting protective effects, risk-increasing effects or no effects. There have been preliminary indications that the use of anti-inflammatory drugs and calcium channel blockers may be protective. A 2010 meta-analysis found that nonsteroidal anti-inflammatory drugs (apart from aspirin), have been associated with at least a 15 percent (higher in long-term and regular users) reduction of incidence of the development of Parkinson's disease.
Exposure to pesticides and a history of head injury have each been linked with Parkinson disease (PD), but the risks are modest. Never having smoked cigarettes, and never drinking caffeinated beverages, are also associated with small increases in risk of developing PD.
Low concentrations of urate in the blood serum is associated with an increased risk of PD.
Currently, an estimated 60 to 75% of diagnosed dementias are of the Alzheimer's and mixed (Alzheimer's and vascular dementia) type, 10 to 15% are Lewy body type, with the remaining types being of an entire spectrum of dementias, including frontotemporal lobar degeneration (Pick's disease), alcoholic dementia, pure vascular dementia, etc. Dementia with Lewy bodies tends to be under-recognized. Dementia with Lewy bodies is slightly more prevalent in men than women. DLB increases in prevalence with age; the mean age at presentation is 75 years.
Dementia with Lewy bodies affects about one million individuals in the United States.
The prognosis and rate of the diseases progression vary considerably among individual patients and genetic kindreds, ranging from life expectancies of several months to several years, and, in exceptional cases, as long as two decades.
Parkinson-plus syndromes are usually more rapidly progressive and less likely to respond to antiparkinsonian medication than PD. However, the additional features of the diseases may respond to medications not used in PD.
Current therapy for Parkinson-plus syndromes is centered around a multidisciplinary treatment of symptoms.
These disorders have been linked to pesticide exposure.
The prevalence and incidence remain unknown but FTDP-17 is an extremely rare condition. It is caused by mutations in the MAPT gene, which encodes a microtubule-binding protein. Over 100 families with 38 different mutations in the tau gene have been identified worldwide. The phenotype of FTDP-17 varies not only between families carrying different mutations but also between and within families carrying the same mutations.
There is currently no effective treatment or cure for PSP, although some of the symptoms can respond to nonspecific measures. The average age at symptoms onset is 63 and survival from onset averages 7 years with a wide variance. Pneumonia is a frequent cause of death.
Parkinson-plus syndromes, also known as disorders of multiple system degeneration, is a group of neurodegenerative diseases featuring the classical features of Parkinson's disease (tremor, rigidity, akinesia/bradykinesia, and postural instability) with additional features that distinguish them from simple idiopathic Parkinson's disease (PD). Some consider Alzheimer's disease to be in this group. Parkinson-plus syndromes are either inherited genetically or occur sporadically.
The atypical parkinsonian or Parkinson-plus syndromes are often difficult to differentiate from PD and each other. They include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Dementia with Lewy bodies (DLB), may or may not be part of the PD spectrum, but it is increasingly recognized as the second-most common type of neurodegenerative dementia after Alzheimer's disease. These disorders are currently lumped into two groups, the synucleinopathies and the tauopathies. They may coexist with other pathologies.
Additional Parkinson-plus syndromes include Pick's disease and olivopontocerebellar atrophy. The latter is characterized by ataxia and dysarthria, and may occur either as an inherited disorder or as a variant of multiple system atrophy. MSA is also characterized by autonomic failure, formerly known as Shy–Drager syndrome.
Clinical features that distinguish Parkinson-plus syndromes from idiopathic PD include symmetrical onset, a lack of or irregular resting tremor, and a reduced response to dopaminergic drugs (including levodopa). Additional features include bradykinesia, early-onset postural instability, increased rigidity in axial muscles, dysautonomia, alien limb syndrome, supranuclear gaze palsy, apraxia, involvement of the cerebellum including the pyramidal cells, and in some instances significant cognitive impairment.
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.
Kufor–Rakeb syndrome is an autosomal recessive disorder of juvenile onset also known as Parkinson disease-9 (PARK9).
Symptoms include supranuclear gaze palsy, spasticity, and dementia.
It can be associated with "ATP13A2". It is named after Kufr Rakeb in Irbid, Jordan.
Dementia with Lewy bodies (DLB) is a type of dementia that worsens over time. Additional symptoms may include fluctuations in alertness, visual hallucinations, slowness of movement, trouble walking, and rigidity. Excessive movement during sleep and mood changes such as depression are also common.
The cause is unknown. Typically, no family history of the disease exists among those affected. The underlying mechanism involves the buildup of Lewy bodies, clumps of alpha-synuclein protein in neurons. It is classified as a neurodegenerative disorder. A diagnosis may be suspected based on symptoms, with blood tests and medical imaging done to rule out other possible causes. The differential diagnosis includes Parkinson's and Alzheimer's.
At present there is no cure. Treatments are supportive and attempt to relieve some of the motor and psychological symptoms associated with the disease. Acetylcholinesterase inhibitors, such as donepezil, may provide some benefit. Some motor problems may improve with levodopa. Antipsychotics, even for hallucinations, should generally be avoided due to side effects.
DLB is the most common cause of dementia after Alzheimer's disease and vascular dementia. It typically begins after the age of 50. About 0.1% of those over 65 are affected. Men appear to be more commonly affected than women. In the late part of the disease, people may depend entirely on others for their care. Life expectancy following diagnosis is about eight years. The abnormal deposits that cause the disease were discovered in 1912 by Frederic Lewy.
The cause of PSP is unknown. Fewer than 1% of those with PSP have a family member with the same disorder. A variant in the gene for tau protein called the H1 haplotype, located on chromosome 17, has been linked to PSP. Nearly all people with PSP received a copy of that variant from each parent, but this is true of about two-thirds of the general population. Therefore, the H1 haplotype appears to be necessary but not sufficient to cause PSP. Other genes, as well as environmental toxins, are being investigated as other possible contributors to the cause of PSP.
Differentiating some kinds of atypical Parkinson: Northwest Parkinson Foundation
Before Parkinson's disease is diagnosed, the differential diagnoses include:
- AIDS can sometimes lead to the symptoms of secondary parkinsonism, due to commonly causing dopaminergic dysfunction. Indeed, parkinsonism can be a presenting feature of HIV infection.
- Corticobasal degeneration
- Creutzfeldt–Jakob disease
- Dementia pugilistica or "boxer's dementia" is a condition that occurs in athletes due to chronic brain trauma.
- Diffuse Lewy body disease
- Drug-induced parkinsonism ("pseudoparkinsonism") due to drugs such as antipsychotics, metoclopramide, sertraline, fluoxetine or the toxin MPTP
- Encephalitis lethargica
- Essential tremor, an illness which has some diagnostic overlap with Parkinson's disease
- Orthostatic tremor
- MDMA addiction and frequent use has been linked to Parkonsonism. Several cases have been reported where individuals are diagnosed with the syndrome after taking MDMA.
- Multiple system atrophy
- Pantothenate kinase-associated neurodegeneration, also known as neurodegeneration with brain iron accumulation or Hallervorden-Spatz syndrome
- Parkinson plus syndrome
- Progressive supranuclear palsy
- Toxicity due to substances such as carbon monoxide, carbon disulfide, manganese, paraquat, mercury, hexane, rotenone, Annonaceae, and toluene (inhalant abuse: "huffing")
- Vascular parkinsonism, associated with underlying cerebrovascular disease
- Wilson's disease is a genetic disorder in which an abnormal accumulation of copper occurs. The excess copper can lead to the formation of a copper-dopamine complex, which leads to the oxidation of dopamine to aminochrome. The most common manifestations include bradykinesia, cogwheel rigidity and a lack of balance.
- Paraneoplastic syndrome: neurological symptoms caused by antibodies associated with cancers
- Genetic
- Rapid onset dystonia parkinsonism
- Parkin mutation
- X-linked dystonia parkinsonism
- Autosomal recessive juvenile parkinsonism
Parkinsonism is a clinical syndrome characterized by tremor, bradykinesia, rigidity, and postural instability. Parkinsonism is found in Parkinson's disease (after which it is named), however a wide range of other causes may lead to this set of symptoms, including some toxins, a few metabolic diseases, and a handful of neurological conditions other than Parkinson's disease.
About 7% of people with parkinsonism have developed their symptoms following treatment with particular medications. Side effect of medications, mainly neuroleptic antipsychotics especially the phenothiazines (such as perphenazine and chlorpromazine), thioxanthenes (such as flupenthixol and zuclopenthixol) and butyrophenones (such as haloperidol), piperazines (such as ziprasidone), and rarely, antidepressants. The incidence of drug-induced parkinsonism increases with age. Drug-induced parkinsonism tends to remain at its presenting level, not progress like Parkinson's disease.
The journal of child neurology published a paper in 2012, Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF), discusses possible new methods to test for MERRF and other mitochondrial diseases, through a simple swabbing technique. This is a less invasive techniques which allows for an analysis of buccal mitochondrial DNA, and showed significant amounts of the common 5 kb and 7.4 kb mitochondrial DNA deletions, also detectable in blood. This study suggests that a buccal swab approach can be used to informatively examine mitochondrial dysfunction in children with seizures and may be applicable to screening mitochondrial disease with other clinical presentations.
Proceedings of the National Academy of Science of the United States of America published an article in 2007 which investigate the human mitochondrial tRNA (hmt-tRNA) mutations which are associated with mitochondrial myopathies. Since the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. All pathogenic mutants displayed pleiotropic phenotypes, with the exception of the G34A anticodon mutation, which solely affected aminoacylation.
The cause of MERRF disorder is due to the mitochondrial genomes mutation. This means that its a pathogenic variants in mtDNA and is transmitted by maternal inheritance. A four points mutations in the genome can be identified which are associated with MERRF: A8344G, T8356C, G8361A, and G8363A. The point mutation A8344G is mostly associated with MERRF, in a study published by Paul Jose Lorenzoni from the Department of neurology at University of Panama stated that 80% of the patients with MERRF disease exhibited this point mutation.This point mutation disrupts the mitochondrial gene for tRNA-Lys and so disrupts synthesis of proteins essential for oxidative phosphorylation.The remaining mutations only account for 10% of cases, and the remaining 10% of he patients with MERRF did not have an identifiable mutation in the mitochondrial DNA.
Many genes are involved. These genes include:
- MT-TK
- MT-TL1
- MT-TH
- MT-TS1
- MT-TS2
- MT-TF
It involves the following characteristics:
- progressive myoclonic epilepsy
- ""Ragged Red Fibers"" - clumps of diseased mitochondria accumulate in the subsarcolemmal region of the muscle fiber and appear as "Ragged Red Fibers" when muscle is stained with modified Gömöri trichrome stain .
There is currently no cure for MERRF.
It is associated with LAMP2. The status of this condition as a GSD has been disputed.
Males with pathogenic "MECP2" mutations usually die within the first 2 years from severe encephalopathy, unless they have an extra X chromosome (often described as Klinefelter syndrome), or have somatic mosaicism.
Male fetuses with the disorder rarely survive to term. Because the disease-causing gene is located on the X chromosome, a female born with an MECP2 mutation on her X chromosome has another X chromosome with an ostensibly normal copy of the same gene, while a male with the mutation on his X chromosome has no other X chromosome, only a Y chromosome; thus, he has no normal gene. Without a normal gene to provide normal proteins in addition to the abnormal proteins caused by a MECP2 mutation, the XY karyotype male fetus is unable to slow the development of the disease, hence the failure of many male fetuses with a MECP2 mutation to survive to term.
Females with a MECP2 mutation, however, have a non-mutant chromosome that provides them enough normal protein to survive longer. Research shows that males with Rett syndrome may result from Klinefelter's syndrome, in which the male has an XXY karyotype. Thus, a non-mutant "MECP2" gene is necessary for a Rett's-affected embryo to survive in most cases, and the embryo, male or female, must have another X chromosome.
There have, however, been several cases of 46,XY karyotype males with a MECP2 mutation (associated with classical Rett syndrome in females) carried to term, who were affected by neonatal encephalopathy and died before 2 years of age. The incidence of Rett syndrome in males is unknown, partly owing to the low survival of male fetuses with the Rett syndrome-associated MECP2 mutations, and partly to differences between signs caused by MECP2 mutations and those caused by Rett's.
Females can live up to 40 years or more. Laboratory studies on Rett syndrome may show abnormalities such as:
- EEG abnormalities from 2 years of age
- atypical brain glycolipids
- elevated CSF levels of "beta"-endorphin and glutamate
- reduction of substance P
- decreased levels of CSF nerve growth factors
A high proportion of deaths are abrupt, but most have no identifiable cause; in some instances death is the result most likely of:
- spontaneous brainstem dysfunction
- cardiac arrest, likely due to long QT syndrome, ventricular tachycardia or other arrhythmias
- seizures
- gastric perforation
There is no FDA-approved treatment for agitation in dementia.
Medical treatment may begin with a cholinesterase inhibitor, which appears safer than other alternatives although evidence for its efficacy is mixed. If this does not improve the symptoms, atypical antipsychotics may offer an alternative, although they are effective against agitation only in the short-term while posing a well-documented risk of cerebrovascular events (e.g. stroke). Other possible interventions, such as traditional antipsychotics or antidepressants, are less well studied for this condition.
Choreoathetosis is the occurrence of involuntary movements in a combination of chorea (irregular migrating contractions) and athetosis (twisting and writhing).
It is caused by many different diseases and agents. It is a symptom of several diseases, including Lesch-Nyhan Syndrome, phenylketonuria, and Huntington disease.
Choreoathetosis is also a common presentation of dyskinesia as a side effect of levodopa-carbidopa in the treatment of Parkinson disease.
Danon disease (or glycogen storage disease Type IIb) is a metabolic disorder.Danon disease is an X-linked lysosomal and glycogen storage disorder associated with hypertrophic cardiomyopathy, skeletal muscle weakness, and intellectual disability.
It is important to rule out infection and other environmental causes of agitation, such as disease or other bodily discomfort, before initiating any intervention. If no such explanation is found, it is important to support caregivers and educate them about simple strategies such as distraction that may delay the transfer to institutional care (which is often triggered by the onset of agitation).
Infantile neuroaxonal dystrophy is a rare pervasive developmental disorder that primarily affects the nervous system. Individuals with infantile neuroaxonal dystrophy typically do not have any symptoms at birth, but between the ages of about 6 and 18 months they begin to experience delays in acquiring new motor and intellectual skills, such as crawling or beginning to speak. Eventually they lose previously acquired skills.
This condition is inherited in an autosomal recessive pattern, which means two copies of the gene ("PLA2G6") in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder each carry one copy of the altered gene but do not show signs and symptoms of the disorder.
Phantosmia has been found to co-exist in patients with other disorders such as schizophrenia, epilepsy, alcoholic psychosis, and depression. It has also been found that many patients may begin to suffer from depression after the occurrence of phantosmia and have looked towards committing suicide. The occurrence of depression resulted from the severe symptoms of phantosmia as everything even food smelled spoilt, rotten and burnt for these patients. By the age of 80, 80% of individuals develop an olfactory disorder. As well 50% of these individuals suffer from anosmia.