Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Atrial fibrillation increases the risk of heart failure by 11 per 1000, kidney problems by 6 per 1000, death by 4 per 1000, stroke by 3 per 1000, and coronary heart disease by 1 per 1000. Women have a worse outcome overall than men. Evidence increasingly suggests that atrial fibrillation is independently associated with a higher risk of developing dementia.
Knowledge that TdP may occur in patients taking certain prescription drugs has been both a major liability and reason for retirement of these medications from the marketplace. Examples of compounds linked to clinical observations of TdP include amiodarone, fluoroquinolones, methadone, lithium, chloroquine, erythromycin, amphetamine, ephedrine, pseudoephedrine, methylphenidate, and phenothiazines. It has also been shown as a side effect of certain anti-arrhythmic medications, such as sotalol, procainamide, and quinidine. The gastrokinetic drug cisapride (Propulsid) was withdrawn from the US market in 2000 after it was linked to deaths caused by long QT syndrome-induced torsades de pointes. In many cases, this effect can be directly linked to QT prolongation mediated predominantly by inhibition of the hERG channel.
In September 2011 (subsequently updated in March 2012 and February 2013), the FDA issued a warning concerning increased incidence of QT prolongation in patients prescribed doses of the antidepressant Celexa (citalopram) above 40 mg per day, considered the maximum allowable dosage, thereby increasing the risk of Torsades. However, a study, "Evaluation of the FDA Warning Against Prescribing Citalopram at Doses Exceeding 40 mg," reported no increased risk of abnormal arrhythmias, thus questioning the validity of the FDA's warning.
The following stimulants, conditions and triggers may increase your risk of the more frequent occurrence of premature ventricular contractions:
- Caffeine, tobacco and alcohol
- Exercise
- High blood pressure (hypertension)
- Anxiety
- Underlying heart disease, including congenital heart disease, coronary artery disease, heart attack, heart failure and a weakened heart muscle (cardiomyopathy)
- African American ethnicity- increased the risk of PVCs by 30% in comparison with the risk in white individuals
- Male sex
- Lower serum magnesium or potassium levels
- Faster sinus rates
- A bundle-branch block on 12-lead ECG
- Hypomagnesemia
- Hypokalemia
Premature ventricular contractions can occur in a healthy person of any age, but are more prevalent in the elderly and in men. They frequently occur spontaneously with no known cause. Heart rate turbulence (HRT) is a phenomenon representing the return to equilibrium of the heart rate after a PVC. HRT parameters correlate significantly with mortality after myocardial infarction (heart attack). Some possible causes of PVCs include:
- Adrenaline excess;
- High blood calcium;
- Cardiomyopathy, hypertrophic or dilated;
- Certain medicines such as digoxin, which increases heart contraction or tricyclic antidepressants
- Chemical (electrolyte) problems in the blood;
- Contact with Carina (trachea/bronchi) when performing medical suctioning stimulates vagus nerve
- Drugs such as:
- Alcohol;
- Caffeine;
- Cocaine
- Theobromine;
- Myocardial infarction;
- Hypercapnia (CO poisoning);
- Hypokalemia—low blood levels of potassium
- Hypomagnesaemia—low blood levels of magnesium
- Hypoxia;
- Ischemia;
- Lack of sleep/exhaustion;
- Magnesium and potassium deficiency;
- Mitral valve prolapse;
- Myocardial contusion;
- Myocarditis;
- Sarcoidosis;
- Smoking
- Stress;
- Thyroid problems;
The following is a list of factors associated with an increased tendency towards developing torsades de pointes:
- Hypokalemia (low blood potassium)
- Hypomagnesemia (low blood magnesium)
- Hypocalcemia (low blood calcium)
- Bradycardia (slow heartbeat)
- Heart failure
- Left ventricular hypertrophy
- Hypothermia
- Subarachnoid hemorrhage
- Hypothyroidism
Isolated first-degree heart block has no direct clinical consequences. There are no symptoms or signs associated with it. It was originally thought of as having a benign prognosis. In the Framingham Heart Study, however, the presence of a prolonged PR interval or first degree AV block doubled the risk of developing atrial fibrillation (irregular heart beat), tripled the risk of requiring an artificial pacemaker, and was associated with a small increase in mortality. This risk was proportional to the degree of PR prolongation.
A subset of individuals with the triad of first-degree heart block, right bundle branch block, and either left anterior fascicular block or left posterior fascicular block (known as trifascicular block) may be at an increased risk of progression to complete heart block.
Atrial fibrillation has been independently associated with a higher risk of dementia. Several mechanisms for this association have been proposed including silent small blood clots (subclinical microthrombi) traveling to the brain resulting in small ischemic strokes without symptoms, altered blood flow to the brain, inflammation, and genetic factors. Effective anticoagulation with novel oral anticoagulants or warfarin appears to be protective against AF-associated dementia and evidence of silent ischemic strokes on MRI.
It can result in many abnormal heart rhythms (arrhythmias), including sinus arrest, sinus node exit block, sinus bradycardia, and other types of bradycardia (slow heart rate).
Sick sinus syndrome may also be associated with tachycardias (fast heart rate) such as atrial tachycardia (PAT) and atrial fibrillation. Tachycardias that occur with sick sinus syndrome are characterized by a long pause after the tachycardia. Sick sinus syndrome is also associated with azygos continuation of interrupted inferior vena cava.
In otherwise healthy patients, occasional premature atrial contractions are a common and normal finding and do not indicate any particular health risk. Rarely, in patients with other underlying structural heart problems, PACs can trigger a more serious arrhythmia such as atrial flutter or atrial fibrillation. In otherwise healthy people, PACs usually disappear with adolescence.
Although often regarded as a relatively benign heart rhythm problem, atrial flutter shares the same complications as the related condition atrial fibrillation. There is paucity of published data directly comparing the two, but overall mortality in these conditions appears to be very similar.
Sick sinus syndrome is a relatively uncommon syndrome in the young and middle age population. Sick sinus syndrome is more common in elderly adults, where the cause is often a non-specific, scar-like degeneration of the cardiac conduction system. Cardiac surgery, especially to the atria, is a common cause of sick sinus syndrome in children.
Ouabain infusion decreases ventricular escape time and increases ventricular escape rhythm. However, a high dose of ouabain can lead to ventricular tachycardia.
Due to the reentrant nature of atrial flutter, it is often possible to ablate the circuit that causes atrial flutter with radiofrequency catheter ablation. Catheter ablation is considered to be a first-line treatment method for many people with typical atrial flutter due to its high rate of success (>90%) and low incidence of complications. This is done in the cardiac electrophysiology lab by causing a ridge of scar tissue in the cavotricuspid isthmus that crosses the path of the circuit that causes atrial flutter. Eliminating conduction through the isthmus prevents reentry, and if successful, prevents the recurrence of the atrial flutter. Atrial fibrillation often occurs (30% within 5 years) after catheter ablation for atrial flutter.
Hypertension, or abnormally high blood pressure, often signifies an elevated level of both psychological and physiological stress. Often, hypertension goes hand in hand with various atrial fibrillations including premature atrial contractions (PACs). Additional factors that may contribute to spontaneous premature atrial contractions could be:
- Increased age
- Abnormal body height
- History of cardiovascular disease (CV)
- Abnormal ANP levels
- Elevated cholesterol
Studies have shown that patients with Pacemaker syndrome and/or with sick sinus syndrome are at higher risk of developing fatal complications that calls for the patients to be carefully monitored in the ICU. Complications include atrial fibrillation, thrombo-embolic events, and heart failure.
The true incidence of TIC is unclear. Some studies have noted the incidence of TIC in adults with irregular heart rhythms to range from 8% to 34%. Other studies of patients with atrial fibrillation and left ventricular dysfunction estimate that 25-50% of these study participants have some degree of TIC. TIC has been reported in all age groups.
AV nodal reentrant tachycardia (AVNRT), or atrioventricular nodal reentrant tachycardia, is a type of abnormal fast heart rhythm. It is a type of supraventricular tachycardia (SVT), meaning that it originates from a location within the heart above the bundle of His. AV nodal reentrant tachycardia is the most common regular supraventricular tachycardia. It is more common in women than men (approximately 75% of cases occur in females). The main symptom is palpitations. Treatment may be with specific physical maneuvers, medications, or, rarely, synchronized cardioversion. Frequent attacks may require radiofrequency ablation, in which the abnormally conducting tissue in the heart is destroyed.
AVNRT occurs when a reentrant circuit forms within or just next to the atrioventricular node. The circuit usually involves two anatomical pathways: the fast pathway and the slow pathway, which are both in the right atrium. The slow pathway (which is usually targeted for ablation) is located inferior and slightly posterior to the AV node, often following the anterior margin of the coronary sinus. The fast pathway is usually located just superior and posterior to the AV node. These pathways are formed from tissue that behaves very much like the AV node, and some authors regard them as "part of" the AV node.
The fast and slow pathways should not be confused with the accessory pathways that give rise to Wolff-Parkinson-White syndrome (WPW syndrome) or atrioventricular reciprocating tachycardia (AVRT). In AVNRT, the fast and slow pathways are located within the right atrium close to or within the AV node and exhibit electrophysiologic properties similar to AV nodal tissue. Accessory pathways that give rise to WPW syndrome and AVRT are located in the atrioventricular valvular rings. They provide a direct connection between the atria and ventricles, and have electrophysiologic properties similar to muscular heart tissue of the heart's ventricles.
Ventricular tachycardia can occur due to coronary heart disease, aortic stenosis, cardiomyopathy, electrolyte problems (e.g., low blood levels of magnesium or potassium), inherited channelopathies (e.g., long-QT syndrome), catecholaminergic polymorphic ventricular tachycardia, arrhythmogenic right ventricular dysplasia, or a heart attack.
The cause is poorly understood. However several risk factors are associated with pacemaker syndrome.
In people without underlying heart disease and who do not have any symptoms, bigeminy in itself does not require any treatment. If it does become symptomatic, beta-blockers can be used to try and suppress ventricular ectopy. Class I and III agents are generally avoided as they can provoke more serious arrhythmias.
Third degree AV block can be treated with Cilostazol which acts to increase Ventricular escape rate
Therapy may be directed either at terminating an episode of the abnormal heart rhythm or at reducing the risk of another VT episode. The treatment for stable VT is tailored to the specific person, with regard to how well the individual tolerates episodes of ventricular tachycardia, how frequently episodes occur, their comorbidities, and their wishes. Individuals suffering from pulseless VT or unstable VT are hemodynamically compromised and require immediate electric cardioversion to shock them out of the VT rhythm.
Atrioventricular reentrant tachycardia, atrioventricular reciprocating tachycardia or AVRT, is a type of abnormal fast heart rhythm and is classified as a type of supraventricular tachycardia (SVT). AVRT is most commonly associated with Wolff-Parkinson-White syndrome, in which an accessory pathway allows electrical signals from the heart's ventricles to enter the atria and cause earlier than normal contraction, which leads to repeated stimulation of the atrioventricular node.
Supraventricular tachycardia (SVT) is an abnormally fast heart rhythm arising from improper electrical activity in the upper part of the heart. There are four main types: atrial fibrillation, paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and Wolff–Parkinson–White syndrome. Symptoms may include palpitations, feeling faint, sweating, shortness of breath, or chest pain.
They start from either the atria or atrioventricular node. They are generally due to one of two mechanisms: re-entry or increased automaticity. The other type of fast heart rhythm is ventricular arrhythmias—rapid rhythms that start within the ventricle. Diagnosis is typically by electrocardiogram (ECG), holter monitor, or event monitor. Blood tests may be done to rule out specific underlying causes such as hyperthyroidism or electrolyte abnormalities.
Specific treatments depend on the type of SVT. They can include medications, medical procedures, or surgery. Vagal maneuvers or a procedure known as catheter ablation may be effective in certain types. For atrial fibrillation calcium channel blockers or beta blockers may be used. Long term some people benefit from blood thinners such as aspirin or warfarin. Atrial fibrillation affects about 25 per 1000 people, paroxysmal supraventricular tachycardia 2.3 per 1000, Wolff-Parkinson-White syndrome 2 per 1000, and atrial flutter 0.8 per 1000.
In the human heart the sinoatrial node is located at the top of the right atrium. The sinoatrial node is the first area of the heart to depolarize and to generate the action potential that leads to depolarization of the rest of the myocardium. Sinoatrial depolarization and subsequent propagation of the electrical impulse suppress the action of the lower natural pacemakers of the heart, which have slower intrinsic rates.
The accelerated idioventricular rhythm occurs when depolarization rate of a normally suppressed focus increases to above that of the "higher order" focuses (the sinoatrial node and the atrioventricular node). This most commonly occurs in the setting of a sinus bradycardia.
Accelerated idioventricular rhythm is the most common reperfusion arrhythmia in humans. However, ventricular tachycardia and ventricular fibrillation remain the most important causes of sudden death following spontaneous restoration of antegrade flow. Prior to the modern practice of percutaneous coronary intervention for acute coronary syndrome, pharmacologic thrombolysis was more common and accelerated idioventricular rhythms were used as a sign of successful reperfusion. It is considered a benign arrhythmia that does not require intervention, though atrioventricular dyssynchrony can cause hemodynamic instability, which can be treated through overdrive pacing or atropine.