Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Atrial fibrillation increases the risk of heart failure by 11 per 1000, kidney problems by 6 per 1000, death by 4 per 1000, stroke by 3 per 1000, and coronary heart disease by 1 per 1000. Women have a worse outcome overall than men. Evidence increasingly suggests that atrial fibrillation is independently associated with a higher risk of developing dementia.
Atrial fibrillation has been independently associated with a higher risk of dementia. Several mechanisms for this association have been proposed including silent small blood clots (subclinical microthrombi) traveling to the brain resulting in small ischemic strokes without symptoms, altered blood flow to the brain, inflammation, and genetic factors. Effective anticoagulation with novel oral anticoagulants or warfarin appears to be protective against AF-associated dementia and evidence of silent ischemic strokes on MRI.
Although often regarded as a relatively benign heart rhythm problem, atrial flutter shares the same complications as the related condition atrial fibrillation. There is paucity of published data directly comparing the two, but overall mortality in these conditions appears to be very similar.
Due to the reentrant nature of atrial flutter, it is often possible to ablate the circuit that causes atrial flutter with radiofrequency catheter ablation. Catheter ablation is considered to be a first-line treatment method for many people with typical atrial flutter due to its high rate of success (>90%) and low incidence of complications. This is done in the cardiac electrophysiology lab by causing a ridge of scar tissue in the cavotricuspid isthmus that crosses the path of the circuit that causes atrial flutter. Eliminating conduction through the isthmus prevents reentry, and if successful, prevents the recurrence of the atrial flutter. Atrial fibrillation often occurs (30% within 5 years) after catheter ablation for atrial flutter.
The true incidence of TIC is unclear. Some studies have noted the incidence of TIC in adults with irregular heart rhythms to range from 8% to 34%. Other studies of patients with atrial fibrillation and left ventricular dysfunction estimate that 25-50% of these study participants have some degree of TIC. TIC has been reported in all age groups.
In otherwise healthy patients, occasional premature atrial contractions are a common and normal finding and do not indicate any particular health risk. Rarely, in patients with other underlying structural heart problems, PACs can trigger a more serious arrhythmia such as atrial flutter or atrial fibrillation. In otherwise healthy people, PACs usually disappear with adolescence.
Ventricular tachycardia can occur due to coronary heart disease, aortic stenosis, cardiomyopathy, electrolyte problems (e.g., low blood levels of magnesium or potassium), inherited channelopathies (e.g., long-QT syndrome), catecholaminergic polymorphic ventricular tachycardia, arrhythmogenic right ventricular dysplasia, or a heart attack.
Congenital heart defects are structural or electrical pathway problems in the heart that are present at birth. Anyone can be affected with this because overall health does not play a role in the problem. Problems with the electrical pathway of the heart can cause very fast or even deadly arrhythmias. Wolff–Parkinson–White syndrome is due to an extra pathway in the heart that is made up of electrical muscle tissue. This tissue allows the electrical impulse, which stimulates the heartbeat, to happen very rapidly. Right Ventricular outflow tract Tachycardia is the most common type of ventricular tachycardia in otherwise healthy individuals. This defect is due to an electrical node in the right ventricle just before the pulmonary artery. When the node is stimulated, the patient will go into ventricular tachycardia, which does not allow the heart to fill with blood before beating again. Long QT Syndrome is another complex problem in the heart and has been labeled as an independent factor in mortality. There are multiple methods of treatment for these including cardiac ablations, medication treatment, or altering your lifestyle to have less stress and exercise. It is possible to live a full and happy life with these conditions.
Therapy may be directed either at terminating an episode of the abnormal heart rhythm or at reducing the risk of another VT episode. The treatment for stable VT is tailored to the specific person, with regard to how well the individual tolerates episodes of ventricular tachycardia, how frequently episodes occur, their comorbidities, and their wishes. Individuals suffering from pulseless VT or unstable VT are hemodynamically compromised and require immediate electric cardioversion to shock them out of the VT rhythm.
Hypertension, or abnormally high blood pressure, often signifies an elevated level of both psychological and physiological stress. Often, hypertension goes hand in hand with various atrial fibrillations including premature atrial contractions (PACs). Additional factors that may contribute to spontaneous premature atrial contractions could be:
- Increased age
- Abnormal body height
- History of cardiovascular disease (CV)
- Abnormal ANP levels
- Elevated cholesterol
Arrhythmia may be classified by rate (tachycardia, bradycardia), mechanism (automaticity, re-entry, triggered) or duration (isolated premature beats; couplets; runs, that is 3 or more beats; non-sustained= less than 30 seconds or sustained= over 30 seconds).
It is also appropriate to classify by site of origin:
It can result in many abnormal heart rhythms (arrhythmias), including sinus arrest, sinus node exit block, sinus bradycardia, and other types of bradycardia (slow heart rate).
Sick sinus syndrome may also be associated with tachycardias (fast heart rate) such as atrial tachycardia (PAT) and atrial fibrillation. Tachycardias that occur with sick sinus syndrome are characterized by a long pause after the tachycardia. Sick sinus syndrome is also associated with azygos continuation of interrupted inferior vena cava.
If untreated, this abnormal heart rhythm can lead to dizziness, chest pain, a sensation of fluttering or pounding in the chest (palpitations), shortness of breath, or fainting (syncope). Atrial fibrillation also increases the risk of stroke. Complications of familial atrial fibrillation can occur at any age, although some people with this heart condition never experience any health problems associated with the disorder.
Atrial fibrillation is the most common type of sustained abnormal heart rhythm (arrhythmia), affecting more than 3 million people in the United States. The risk of developing this irregular heart rhythm increases with age. The incidence of the familial form of atrial fibrillation is unknown; however, recent studies suggest that up to 30 percent of all people with atrial fibrillation may have a history of the condition in their family.
Supraventricular tachycardia (SVT) is an abnormally fast heart rhythm arising from improper electrical activity in the upper part of the heart. There are four main types: atrial fibrillation, paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and Wolff–Parkinson–White syndrome. Symptoms may include palpitations, feeling faint, sweating, shortness of breath, or chest pain.
They start from either the atria or atrioventricular node. They are generally due to one of two mechanisms: re-entry or increased automaticity. The other type of fast heart rhythm is ventricular arrhythmias—rapid rhythms that start within the ventricle. Diagnosis is typically by electrocardiogram (ECG), holter monitor, or event monitor. Blood tests may be done to rule out specific underlying causes such as hyperthyroidism or electrolyte abnormalities.
Specific treatments depend on the type of SVT. They can include medications, medical procedures, or surgery. Vagal maneuvers or a procedure known as catheter ablation may be effective in certain types. For atrial fibrillation calcium channel blockers or beta blockers may be used. Long term some people benefit from blood thinners such as aspirin or warfarin. Atrial fibrillation affects about 25 per 1000 people, paroxysmal supraventricular tachycardia 2.3 per 1000, Wolff-Parkinson-White syndrome 2 per 1000, and atrial flutter 0.8 per 1000.
Some causes of tachycardia include:
- Adrenergic storm
- Alcohol
- Amphetamine
- Anaemia
- Antiarrhythmic agents
- Anxiety
- Atrial fibrillation
- Atrial flutter
- Atrial tachycardia
- AV nodal reentrant tachycardia
- Brugada syndrome
- Caffeine
- Cocaine
- Exercise
- Fear
- Fever
- Hypoglycemia
- Hypovolemia
- Hyperthyroidism
- Hyperventilation
- Infection
- Junctional tachycardia
- Methamphetamine
- Multifocal atrial tachycardia
- Nicotine
- Pacemaker mediated
- Pain
- Pheochromocytoma
- Sinus tachycardia
- Tricyclic antidepressants
- Wolff–Parkinson–White syndrome
Many conditions can cause third-degree heart block, but the most common cause is coronary ischemia. Progressive degeneration of the electrical conduction system of the heart can lead to third-degree heart block. This may be preceded by first-degree AV block, second-degree AV block, bundle branch block, or bifascicular block. In addition, acute myocardial infarction may present with third-degree AV block.
An "inferior wall myocardial infarction" may cause damage to the AV node, causing third-degree heart block. In this case, the damage is usually transitory. Studies have shown that third-degree heart block in the setting of an inferior wall myocardial infarction typically resolves within 2 weeks. The escape rhythm typically originates in the AV junction, producing a narrow complex escape rhythm.
An "anterior wall myocardial infarction" may damage the distal conduction system of the heart, causing third-degree heart block. This is typically extensive, permanent damage to the conduction system, necessitating a permanent pacemaker to be placed. The escape rhythm typically originates in the ventricles, producing a wide complex escape rhythm.
Third-degree heart block may also be congenital and has been linked to the presence of lupus in the mother. It is thought that maternal antibodies may cross the placenta and attack the heart tissue during gestation. The cause of congenital third-degree heart block in many patients is unknown. Studies suggest that the prevalence of congenital third-degree heart block is between 1 in 15,000 and 1 in 22,000 live births.
Hyperkalemia in those with previous cardiac disease and Lyme disease can also result in third-degree heart block.
In people without underlying heart disease and who do not have any symptoms, bigeminy in itself does not require any treatment. If it does become symptomatic, beta-blockers can be used to try and suppress ventricular ectopy. Class I and III agents are generally avoided as they can provoke more serious arrhythmias.
The prognosis of patients with complete heart block is generally poor without therapy. Patients with 1st and 2nd degree heart block are usually asymptomatic.
Sinus tachycardia is usually a response to normal physiological situations, such as exercise and an increased sympathetic tone with increased catecholamine release—stress, fright, flight, anger. Other causes include:
- Pain
- Fever
- Anxiety
- Dehydration
- Malignant hyperthermia
- Hypovolemia with hypotension and shock
- Anemia
- Heart failure
- Hyperthyroidism
- Mercury poisoning
- Kawasaki disease
- Pheochromocytoma
- Sepsis
- Pulmonary embolism
- Acute coronary ischemia and myocardial infarction
- Chronic obstructive pulmonary disease
- Hypoxia
- Intake of stimulants such as caffeine, theophylline, nicotine, cocaine, or amphetamines
- Hyperdynamic circulation
- Electric shock
- Drug withdrawal
- Porphyria
- Acute inflammatory demyelinating polyradiculoneuropathy
- Postural orthostatic tachycardia syndrome
AV nodal reentrant tachycardia (AVNRT), or atrioventricular nodal reentrant tachycardia, is a type of abnormal fast heart rhythm. It is a type of supraventricular tachycardia (SVT), meaning that it originates from a location within the heart above the bundle of His. AV nodal reentrant tachycardia is the most common regular supraventricular tachycardia. It is more common in women than men (approximately 75% of cases occur in females). The main symptom is palpitations. Treatment may be with specific physical maneuvers, medications, or, rarely, synchronized cardioversion. Frequent attacks may require radiofrequency ablation, in which the abnormally conducting tissue in the heart is destroyed.
AVNRT occurs when a reentrant circuit forms within or just next to the atrioventricular node. The circuit usually involves two anatomical pathways: the fast pathway and the slow pathway, which are both in the right atrium. The slow pathway (which is usually targeted for ablation) is located inferior and slightly posterior to the AV node, often following the anterior margin of the coronary sinus. The fast pathway is usually located just superior and posterior to the AV node. These pathways are formed from tissue that behaves very much like the AV node, and some authors regard them as "part of" the AV node.
The fast and slow pathways should not be confused with the accessory pathways that give rise to Wolff-Parkinson-White syndrome (WPW syndrome) or atrioventricular reciprocating tachycardia (AVRT). In AVNRT, the fast and slow pathways are located within the right atrium close to or within the AV node and exhibit electrophysiologic properties similar to AV nodal tissue. Accessory pathways that give rise to WPW syndrome and AVRT are located in the atrioventricular valvular rings. They provide a direct connection between the atria and ventricles, and have electrophysiologic properties similar to muscular heart tissue of the heart's ventricles.
Sick sinus syndrome is a relatively uncommon syndrome in the young and middle age population. Sick sinus syndrome is more common in elderly adults, where the cause is often a non-specific, scar-like degeneration of the cardiac conduction system. Cardiac surgery, especially to the atria, is a common cause of sick sinus syndrome in children.
Most SVTs are unpleasant rather than life-threatening, although very fast heart rates can be problematic for those with underlying ischemic heart disease or the elderly. Episodes require treatment when they occur, but interval therapy may also be used to prevent or reduce recurrence. While some treatment modalities can be applied to all SVTs, there are specific therapies available to treat some sub-types. Effective treatment consequently requires knowledge of how and where the arrhythmia is initiated and its mode of spread.
SVTs can be classified by whether the AV node is involved in maintaining the rhythm. If so, slowing conduction through the AV node will terminate it. If not, AV nodal blocking maneuvers will not work, although transient AV block is still useful as it may unmask an underlying abnormal rhythm.
MAT usually arises because of an underlying medical condition. Its prevalence has been estimated at about 3 per 1000 in adult hospital inpatients and is much rarer in paediatric practice; it is more common in the elderly, and its management and prognosis are both those of the underlying diagnosis.
It is mostly common in patients with lung disorders, but it can occur after acute myocardial infarction and can also occur in the setting of low blood potassium or low blood magnesium.
It is sometimes associated with digitalis toxicity in patients with heart disease.
It is most commonly associated with hypoxia and COPD. Additionally, it can be caused by theophylline toxicity, a drug with a narrow therapeutic index commonly used to treat COPD. Theophylline can cause a number of different abnormal heart rhythms when in excess, and thus further predisposes COPD patients to MAT. Theophylline toxicity often occurs following acute or chronic overtreatment or factors lowering its clearance from the body.
After any PVC there is a pause that can lead to the development of bigeminy. A PVC wavefront often encounters a refractory AV node that does not conduct the wavefront retrograde. Thus the atrium is not depolarized and the sinus node is not reset. Since the sinus p wave to PVC interval is less than the normal P-P interval, the interval between the PVC and the next p wave is prolonged to equal the normal time elapsed during two P-P intervals. This is called a "compensatory" pause. The pause after the PVC leads to a longer recovery time which is associated with a higher likelihood of myocardium being in different stages of re-polarization. This then allows for re-entrant circuits and sets up the ventricle for another PVC after the next sinus beat. The constant interval between the sinus beat and PVC suggests a reentrant etiology rather than spontaneous automaticity of the ventricle.
Atrial premature complexes (APCs) do not have a compensatory pause since they reset the sinus node but atrial or supraventricular bigeminy can occur. If the APCs are very premature, the wave front can encounter a refractory AV node and not be conducted. This can be mistaken for sinus bradycardia if the APC is buried in the T wave since the APC will reset the SA node and lead to a long P-P interval.
Ectopic beat (or cardiac ectopy) is a disturbance of the cardiac rhythm frequently related to the electrical conduction system of the heart, in which beats arise from fibers or group of fibers outside the region in the heart muscle ordinarily responsible for impulse formation ("i.e.", the sinoatrial node). An ectopic beat can be further classified as either a premature ventricular contraction, or a premature atrial contraction.
Some patients describe this experience as a 'flip' or a 'jolt' in the chest, or a 'heart hiccups', while others report dropped or missed beats. Ectopic beats are more common during periods of stress, exercise or debility; they may also be triggered by consumption of some food like alcohol, strong cheese, or chocolate.
It is a form of cardiac arrhythmia in which ectopic foci within either ventricular or atrial , or from finer branches of the electric transduction system, cause additional beats of the heart. Some medications may worsen the phenomenon.
Ectopic beats are considered normal and are not indicative of cardiac pathology. Ectopic beats often remain undetected and occur as part of minor errors in the heart conduction system. They are rarely indicative of cardiac pathology, although may occur more frequently or be more noticeable in those with existing cardiac abnormalities. Ectopic beats are a type of cardiac arrhythmias, which is a variety of cardiac abnormalities relating to rate or rhythm of the cardiac cycle.
Ectopic beats may become more frequent during anxiety, panic attack, and the fight-or-flight response due to the increase in sympathetic nervous activity, stimulating more frequent contractions and increasing stroke volume. The consumption of nicotine, alcohol, epinephrine and caffeine may also increase the incidences of ectopic beats, due to their influence on the action of cardiomyocytes.