Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Kidney failure is very common in patients suffering from congestive heart failure. It was shown that kidney failure complicates one-third of all admissions for heart failure, which is the leading cause of hospitalization in the United States among adults over 65 years old. These complications led to longer hospital stay, higher mortality, and greater chance for readmission. Another study found that 39% of patients in NYHA class 4 and 31% of patients in NYHA class 3 had severely impaired kidney function. Similarly, kidney failure can have deleterious effects on cardiovascular function. It was estimated that about 44% of deaths in patients with end-stage kidney failure (ESKF) are due to cardiovascular disease.
It is relatively unusual (25% of the total number of cases) for cholesterol emboli to occur spontaneously; this usually happens in people with severe atherosclerosis of the large arteries such as the aorta. In the other 75% it is a complication of medical procedures involving the blood vessels, such as vascular surgery or angiography. In coronary catheterization, for instance, the incidence is 1.4%. Furthermore, cholesterol embolism may develop after the commencement of anticoagulants or thrombolytic medication that decrease blood clotting or dissolve blood clots, respectively. They probably lead to cholesterol emboli by removing blood clots that cover up a damaged atherosclerotic plaque; cholesterol-rich debris can then enter the bloodsteam.
To minimize the risk for contrast-induced nephropathy, various actions can be taken if the patient has predisposing conditions. These have been reviewed in a meta-analysis. A separate meta-analysis addresses interventions for emergency patients with baseline insufficient kidney function.
Individuals with chronic kidney disease, diabetes mellitus, high blood pressure, reduced intravascular volume, or who are elderly are at increased risk of developing CIN after exposure to iodinated contrast.
A clinical prediction rule is available to estimate probability of nephropathy (increase ≥25% and/or ≥0.5 mg/dl in serum creatinine at 48 h):
Risk Factors:
- Systolic blood pressure <80 mm Hg - 5 points
- Intraarterial balloon pump - 5 points
- Congestive heart failure (Class III-IV or history of pulmonary edema) - 5 points
- Age >75 y - 4 points
- Hematocrit level <39% for men and <35% for women - 3 points
- Diabetes mellitus- 3 points
- Contrast media volume - 1 point for each 100 mL
- Decreased kidney function:
- Serum creatinine level >1.5 g/dL - 4 points
- Estimated Glomerular filtration rate (online calculator)
Scoring:
5 or less points
- Risk of CIN - 7.5
- Risk of Dialysis - 0.04%
6–10 points
- Risk of CIN - 14.0
- Risk of Dialysis - 0.12%
11–16 points
- Risk of CIN - 26.1*
- Risk of Dialysis - 1.09%
>16 points
- Risk of CIN - 57.3
- Risk of Dialysis - 12.8%
The following risk factors have been associated with increased incidence of CRS.
- Older age
- Comorbid conditions (diabetes mellitus, uncontrolled hypertension, anemia)
- Drugs (anti-inflammatory agents, diuretics, ACE inhibitors, ARBs)
- History of heart failure or impaired left ventricular ejection fraction
- Prior myocardial infarction
- New York Heart Association (NYHA) functional class
- Elevated cardiac troponins
- Chronic kidney disease (reduced eGFR, elevated BUN, creatinine, or cystatin)
Cholesterol embolism (often cholesterol crystal embolism or atheroembolism, sometimes blue toe or purple toe syndrome or trash foot or warfarin blue toe syndrome) occurs when cholesterol is released, usually from an atherosclerotic plaque, and travels as an embolus in the bloodstream to lodge (as an embolism) causing an obstruction in blood vessels further away. Most commonly this causes skin symptoms (usually livedo reticularis), gangrene of the extremities and sometimes renal failure; problems with other organs may arise, depending on the site at which the cholesterol crystals enter the bloodstream. When the kidneys are involved, the disease is referred to as atheroembolic renal disease (AERD). The diagnosis usually involves biopsy (removing a tissue sample) from an affected organ. Cholesterol embolism is treated by removing the cause and giving supportive therapy; statin drugs have been found to improve the prognosis.
According to the United States Renal Data System (USRDS), hypertensive nephropathy accounts for more than one-third of patients on hemodialysis and the annual mortality rate for patients on hemodialysis is 23.3%.
Haemodialysis is recommended for patients who progress to end-stage kidney disease (ESKD) and hypertensive nephropathy is the second most common cause of ESKD after diabetes.
Patient prognosis is dependent on numerous factors including age, ethnicity, blood pressure and glomerular filtration rate. Changes in lifestyle factors, such as reduced salt intake and increased physical activity have been shown to improve outcomes but are insufficient without pharmacological treatment.
As the majority of individuals with hepatorenal syndrome have cirrhosis, much of the epidemiological data on HRS comes from the cirrhotic population. The condition is quite common: approximately 10% of individuals admitted to hospital with ascites have HRS. A retrospective case series of cirrhotic patients treated with terlipressin suggested that 20.0% of acute kidney failure in cirrhotics was due to type 1 HRS, and 6.6% was due to type 2 HRS. It is estimated that 18% of individuals with cirrhosis and ascites will develop HRS within one year of their diagnosis with cirrhosis, and 39% of these individuals will develop HRS within five years of diagnosis. Three independent risk factors for the development of HRS in cirrhotics have been identified: liver size, plasma renin activity, and serum sodium concentration.
The prognosis of these patients is grim with untreated patients having an extremely short survival. The severity of liver disease (as evidenced by the MELD score) has been shown to be a determinant of outcome. Some patients without cirrhosis develop HRS, with an incidence of about 20% seen in one study of ill patients with alcoholic hepatitis.
Most cases of renal artery stenosis are asymptomatic, and the main problem is high blood pressure that cannot be controlled with medication. Decreased kidney function may develop if both kidneys do not receive adequate blood flow, furthermore some people with renal artery stenosis present with episodes of flash pulmonary edema.
Depending on the cause, a proportion of patients (5–10%) will never regain full kidney function, thus entering end-stage kidney failure and requiring lifelong dialysis or a kidney transplant. Patients with AKI are more likely to die prematurely after being discharged from hospital, even if their kidney function has recovered.
The risk of developing chronic kidney disease is increased (8.8-fold).
Renal artery stenosis is the narrowing of one of the renal arteries, most often caused by atherosclerosis or fibromuscular dysplasia. This narrowing of the renal artery can impede blood flow to the target kidney, resulting in renovascular hypertension – a secondary type of high blood pressure. Possible complications of renal artery stenosis are chronic kidney disease and coronary artery disease.
Patients with ESKD are at increased overall risk for cancer. This risk is particularly high in younger patients and gradually diminishes with age. Medical specialty professional organizations recommend that physicians do not perform routine cancer screening in patients with limited life expectancies due to ESKD because evidence does not show that such tests lead to improved patient outcomes.
The osmolality of the contrast agent was previously believed to be an important factor in contrast-induced nephropathy. Today it has become increasingly clear that other physicochemical properties play a greater role, such as viscosity. Attention should be paid to using contrast agents of low viscosity. Moreover, sufficient fluids should be supplied to limit fluid viscosity of urine. Modern iodinated contrast agents are non-ionic, the older ionic types caused more adverse effects, and their use has diminished.
Mortality after AKI remains high. Overall it is 20%, 30% if the patient is referred to nephrology, 50% if dialyzed, and 70% if on ICU.
If AKI develops after major surgery (13.4% of all people who have undergone major surgery) the risk of death is markedly increased (over 12-fold).
The incidence of hypertensive nephropathy varies around the world. For instance, it accounts for as many as 25% and 17% of patients starting dialysis for end-stage kidney disease in Italy and France respectively. Contrastingly, Japan and China report only 6 and 7% respectively. Since the year 2000, nephropathy caused by hypertension has increased in incidence by 8.7% In reality, these figures may be even higher, as hypertension is not always reported as the specific cause of kidney disease.
It has been recognized that the incidence of hypertensive nephropathy varies with ethnicity. Compared to Caucasians, African Americans in the USA are much more likely to develop hypertensive nephropathy. Of those who do, the proportion who then go on to develop end-stage renal failure is 3.5 times higher than in the Caucasian population. In addition to this, African Americans tend to develop hypertensive nephropathy at a younger age than Caucasians (45 to 65, compared to >65).
The most common cause of CKD as of 2015 is diabetes mellitus followed by high blood pressure and glomerulonephritis. Other causes of CKD include idiopathic (i.e. unknown cause, often associated with small kidneys on renal ultrasound). Together, these cause about 75% of all adult cases.
Historically, kidney disease has been classified according to the part of the kidney anatomy involved.
- Vascular disease includes large vessel disease such as bilateral renal artery stenosis and small vessel disease such as ischemic nephropathy, hemolytic-uremic syndrome, and vasculitis.
- Glomerular disease comprises a diverse group and is classified into:
- Primary glomerular disease such as focal segmental glomerulosclerosis and IgA nephropathy (or nephritis)
- Secondary glomerular disease such as diabetic nephropathy and lupus nephritis
- Congenital disease such as polycystic kidney disease.
- Tubulointerstitial disease includes drug- and toxin-induced chronic tubulointerstitial nephritis, and reflux nephropathy.
- Obstructive nephropathy is exemplified by bilateral kidney stones and diseases of the prostate such as benign prostatic hyperplasia.
- On rare cases, pinworms infecting the kidney can also cause nephropathy.
- Nontraditional causes of CKD (CKDu) are denoted if the common causes of CKD are not present:
- CKD of unknown cause is the subject of study by the Sri Lanka Ministry of Health and the World Health Organization 2009–2012.
- Mesoamerican nephropathy, a form of CKDu, is "a new form of kidney disease that could be called agricultural nephropathy".
The "APOL1" gene has been proposed as a major genetic risk locus for a spectrum of nondiabetic renal failure in individuals of African origin, these include HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies. Two western African variants in APOL1 have been shown to be associated with end stage kidney disease in African Americans and Hispanic Americans.
Cortical necrosis is a severe and life-threatening condition, with mortality rates over 50%. Those mortality rates are even higher in neonates with the condition due to the overall difficult nature of neonatal care and an increased frequency of comorbid conditions. The extent of the necrosis is a major determinant of the prognosis, which in turn is dependent on the duration of ischemia, duration of oliguria, and the severity of the precipitating conditions. Of those that survive the initial event, there are varying degrees of recovery possible, depending on the extent of the damage.
Chronic kidney disease (CKD) has numerous causes. The most common causes of CKD are diabetes mellitus and long-term, uncontrolled hypertension. Polycystic kidney disease is another well-known cause of CKD. The majority of people afflicted with polycystic kidney disease have a family history of the disease. Other genetic illnesses affect kidney function, as well.
Overuse of common drugs such as ibuprofen, and acetaminophen (paracetamol) can also cause chronic kidney disease.
Some infectious disease agents, such as hantavirus, can attack the kidneys, causing kidney failure.
Management of sickle nephropathy is not separate from that of overall patient management. In addition, however, the use of ACE inhibitors has been associated with improvement of the hyperfiltration glomerulopathy. Three-year graft and patient survival in kidney transplant recipients with sickle nephropathy is lower when compared to those with other causes of end-stage kidney disease.
The evidence linking vitamin C supplements with an increased rate of kidney stones is inconclusive. The excess dietary intake of vitamin C might increase the risk of calcium oxalate stone formation, in practice this is rarely encountered. The link between vitamin D intake and kidney stones is also tenuous. Excessive vitamin D supplementation may increase the risk of stone formation by increasing the intestinal absorption of calcium; correction of a deficiency does not.
Despite expensive treatments, lupus nephritis remains a major cause of morbidity and mortality in people with relapsing or refractory lupus nephritis.
The long-term use of lithium, a medication commonly used to treat bipolar disorder and schizoaffective disorders, is known to cause nephropathy.
Diets in Western nations typically contain a large proportion of animal protein. Consumption of animal protein creates an acid load that increases urinary excretion of calcium and uric acid and reduced citrate. Urinary excretion of excess sulfurous amino acids (e.g., cysteine and methionine), uric acid, and other acidic metabolites from animal protein acidifies the urine, which promotes the formation of kidney stones. Low urinary citrate excretion is also commonly found in those with a high dietary intake of animal protein, whereas vegetarians tend to have higher levels of citrate excretion. Low urinary citrate, too, promotes stone formation.
Sickle cell nephropathy is a type of nephropathy associated with sickle cell disease which causes kidney complications as a result of sickling of red blood cells in the small blood vessels. The hypertonic and relatively hypoxic environment of the renal medulla, coupled with the slow blood flow in the vasa recta, favors sickling of red blood cells, with resultant local infarction (papillary necrosis). Functional tubule defects in patients with sickle cell disease are likely the result of partial ischemic injury to the renal tubules.
Also the sickle cell disease in young patients is characterized by renal hyperperfusion, glomerular hypertrophy, and glomerular hyperfiltration. Many of these individuals eventually develop a glomerulopathy leading to glomerular proteinuria (present in as many as 30%) and, in some, the nephrotic syndrome. Co-inheritance of microdeletions in the -globin gene (thalassemia) appear to protect against the development of nephropathy and are associated with lower mean arterial pressure and less protein in the urine.
Mild increases in the blood levels of nitrogen and uric acid can also develop. Advanced kidney failure and high blood urea levels occur in 10% of cases. Pathologic examination reveals the typical lesion of "hyperfiltration nephropathy" namely, focal segmental glomerular sclerosis. This finding has led to the suggestion that anemia-induced hyperfiltration in childhood is the principal cause of the adult glomerulopathy. Nephron loss secondary to ischemic injury also contributes to the development of azotemia in these patients.
In addition to the glomerulopathy described above, kidney complications of sickle cell disease include cortical infarcts leading to loss of function, persistent bloody urine, and perinephric hematomas. Papillary infarcts, demonstrable radiographically in 50% of patients with sickle trait, lead to an increased risk of bacterial infection in the scarred kidney tissues and functional tubule abnormalities. The presence of visible blood in the urine without pain occurs with a higher frequency in sickle trait than in sickle cell disease and likely results from infarctive episodes in the renal medulla. Functional tubule abnormalities such as nephrogenic diabetes insipidus result from marked reduction in vasa recta blood flow, combined with ischemic tubule injury. This concentrating defect places these patients at increased risk of dehydration and, hence, sickling crises. The concentrating defect also occurs in individuals with sickle trait. Other tubule defects involve potassium and hydrogen ion excretion, occasionally leading to high blood potassium, metabolic acidosis, and a defect in uric acid excretion which, combined with increased purine synthesis in the bone marrow, results in high blood uric acid levels.
Prompt treatment of some causes of azotemia can result in restoration of kidney function; delayed treatment may result in permanent loss of renal function. Treatment may include hemodialysis or peritoneal dialysis, medications to increase cardiac output and increase blood pressure, and the treatment of the condition that caused the azotemia.