Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
VALI is most common in patients receiving mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ALI/ARDS).
Possible reasons for predisposition to VALI include:
- An injured lung may be at risk for further injury
- Cyclic atelectasis is particularly common in an injured lung
The most common cause is post-surgical atelectasis, characterized by splinting, i.e. restricted breathing after abdominal surgery.
Another common cause is pulmonary tuberculosis. Smokers and the elderly are also at an increased risk. Outside of this context, atelectasis implies some blockage of a bronchiole or bronchus, which can be within the airway (foreign body, mucus plug), from the wall (tumor, usually squamous cell carcinoma) or compressing from the outside (tumor, lymph node, tubercle). Another cause is poor surfactant spreading during inspiration, causing the surface tension to be at its highest which tends to collapse smaller alveoli. Atelectasis may also occur during suction, as along with sputum, air is withdrawn from the lungs. There are several types of atelectasis according to their underlying mechanisms or the distribution of alveolar collapse; resorption, compression, microatelectasis and contraction atelectasis.
The annual age-adjusted incidence rate (AAIR) of PSP is thought to be three to six times as high in males as in females. Fishman cites AAIR's of 7.4 and 1.2 cases per 100,000 person-years in males and females, respectively. Significantly above-average height is also associated with increased risk of PSP – in people who are at least 76 inches (1.93 meters) tall, the AAIR is about 200 cases per 100,000 person-years. Slim build also seems to increase the risk of PSP.
The risk of contracting a first spontaneous pneumothorax is elevated among male and female smokers by factors of approximately 22 and 9, respectively, compared to matched non-smokers of the same sex. Individuals who smoke at higher intensity are at higher risk, with a "greater-than-linear" effect; men who smoke 10 cigarettes per day have an approximate 20-fold increased risk over comparable non-smokers, while smokers consuming 20 cigarettes per day show an estimated 100-fold increase in risk.
In secondary spontaneous pneumothorax, the estimated annual AAIR is 6.3 and 2.0 cases per 100,000 person-years for males and females, respectively, with the risk of recurrence depending on the presence and severity of any underlying lung disease. Once a second episode has occurred, there is a high likelihood of subsequent further episodes. The incidence in children has not been well studied, but is estimated to be between 5 and 10 cases per 100,000 person-years.
Death from pneumothorax is very uncommon (except in tension pneumothoraces). British statistics show an annual mortality rate of 1.26 and 0.62 deaths per million person-years in men and women, respectively. A significantly increased risk of death is seen in older victims and in those with secondary pneumothoraces.
Pulmonary contusion can result in respiratory failure—about half of such cases occur within a few hours of the initial trauma. Other severe complications, including infections and acute respiratory distress syndrome (ARDS) occur in up to half of cases. Elderly people and those who have heart, lung, or kidney disease prior to the injury are more likely to stay longer in hospital and have complications from the injury. Complications occur in 55% of people with heart or lung disease and 13% of those without. Of people with pulmonary contusion alone, 17% develop ARDS, while 78% of people with at least two additional injuries develop the condition. A larger contusion is associated with an increased risk. In one study, 82% of people with 20% or more of the lung volume affected developed ARDS, while only 22% of people with less than 20% did so.
Pneumonia, another potential complication, develops in as many as 20% of people with pulmonary contusion. Contused lungs are less able to remove bacteria than uninjured lungs, predisposing them to infection. Intubation and mechanical ventilation further increase the risk of developing pneumonia; the tube is passed through the nose or mouth into the airways, potentially tracking bacteria from the mouth or sinuses into them. Also, intubation prevents coughing, which would clear bacteria-laden secretions from the airways, and secretions pool near the tube's cuff and allow bacteria to grow. The sooner the endotracheal tube is removed, the lower the risk of pneumonia, but if it is removed too early and has to be put back in, the risk of pneumonia rises. People who are at risk for pulmonary aspiration (e.g. those with lowered level of consciousness due to head injuries) are especially likely to get pneumonia. As with ARDS, the chances of developing pneumonia increase with the size of the contusion. Children and adults have been found to have similar rates of complication with pneumonia and ARDS.
The annual incidence of ARDS is 13–23 people per 100,000 in the general population. Its incidence in the mechanically ventilated population in intensive care units is much higher. According to Brun-Buisson "et al" (2004), there is a prevalence of acute lung injury (ALI) of 16.1% percent in ventilated patients admitted for more than 4 hours.
Worldwide, severe sepsis is the most common trigger causing ARDS. Other triggers include mechanical ventilation, sepsis, pneumonia, Gilchrist's disease, drowning, circulatory shock, aspiration, traumaespecially pulmonary contusionmajor surgery, massive blood transfusions, smoke inhalation, drug reaction or overdose, fat emboli and reperfusion pulmonary edema after lung transplantation or pulmonary embolectomy. Pneumonia and sepsis are the most common triggers, and pneumonia is present in up to 60% of patients and may be either causes or complications of ARDS. Alcohol excess appears to increase the risk of ARDS. Diabetes was originally thought to decrease the risk of ARDS, but this has shown to be due to an increase in the risk of pulmonary edema. Elevated abdominal pressure of any cause is also probably a risk factor for the development of ARDS, particularly during mechanical ventilation.
The death rate varies from 25–40% in centers using up-to-date ventilatory strategies and up to 58% in all centers.
Pulmonary contusion is found in 30–75% of severe cases of chest injury, making it the most common serious injury to occur in association with thoracic trauma. Of people who have multiple injuries with an injury severity score of over 15, pulmonary contusion occurs in about 17%. It is difficult to determine the death rate (mortality) because pulmonary contusion rarely occurs by itself. Usually, deaths of people with pulmonary contusion result from other injuries, commonly traumatic brain injury. It is controversial whether pulmonary contusion with flail chest is a major factor in mortality on its own or whether it merely contributes to mortality in people with multiple injuries. The estimated mortality rate of pulmonary contusion ranges from 14–40%, depending on the severity of the contusion itself and on associated injuries. When the contusions are small, they do not normally increase the chance of death or poor outcome for people with blunt chest trauma; however, these chances increase with the size of the contusion. One study found that 35% of people with multiple significant injuries including pulmonary contusion die. In another study, 11% of people with pulmonary contusion alone died, while the number rose to 22% in those with additional injuries. Pulmonary contusion is thought to be the direct cause of death in a quarter to a half of people with multiple injuries (polytrauma) who die. An accompanying flail chest increases the morbidity and mortality to more than twice that of pulmonary contusion alone.
Pulmonary contusion is the most common cause of death among vehicle occupants involved in accidents, and it is thought to contribute significantly in about a quarter of deaths resulting from vehicle collisions. As vehicle use has increased, so has the number of auto accidents, and with it the number of chest injuries. However an increase in the number of airbags installed in modern cars may be decreasing the incidence of pulmonary contusion. Use of child restraint systems has brought the approximate incidence of pulmonary contusion in children in vehicle accidents from 22% to 10%.
Differences in the bodies of children and adults lead to different manifestations of pulmonary contusion and associated injuries; for example, children have less body mass, so the same force is more likely to lead to trauma in multiple body systems. Since their chest walls are more flexible, children are more vulnerable to pulmonary contusion than adults are, and thus suffer from the injury more commonly. Pulmonary contusion has been found in 53% of children with chest injuries requiring hospitalization. Children in forceful impacts suffer twice as many pulmonary contusions as adults with similar injury mechanisms, yet have proportionately fewer rib fractures. The rates of certain types of injury mechanisms differ between children and adults; for example, children are more often hit by cars as pedestrians. Some differences in children's physiology might be advantageous (for example they are less likely to have other medical conditions), and thus they have been predicted to have a better outcome. However, despite these differences, children with pulmonary contusion have similar mortality rates to adults.
24 percent of all patients mechanically ventilated will develop VALI for reasons other than ALI or ARDS. The incidence is probably higher among patients who already have ALI/ARDS, but estimates vary widely. The variable estimates reflect the difficulty in distinguishing VALI from progressive ALI/ARDS.
Secondary spontaneous pneumothorax occurs in the setting of a variety of lung diseases. The most common is chronic obstructive pulmonary disease (COPD), which accounts for approximately 70% of cases. Known lung diseases that may significantly increase the risk for pneumothorax are
In children, additional causes include measles, echinococcosis, inhalation of a foreign body, and certain congenital malformations (congenital cystic adenomatoid malformation and congenital lobar emphysema).
11.5% of people with a spontaneous pneumothorax have a family member who has previously experienced a pneumothorax. The hereditary conditions – Marfan syndrome, homocystinuria, Ehlers–Danlos syndrome, alpha 1-antitrypsin deficiency (which leads to emphysema), and Birt–Hogg–Dubé syndrome—have all been linked to familial pneumothorax. Generally, these conditions cause other signs and symptoms as well, and pneumothorax is not usually the primary finding. Birt–Hogg–Dubé syndrome is caused by mutations in the "FLCN" gene (located at chromosome 17p11.2), which encodes a protein named folliculin. "FLCN" mutations and lung lesions have also been identified in familial cases of pneumothorax where other features of Birt–Hogg–Dubé syndrome are absent. In addition to the genetic associations, the HLA haplotype AB is also a genetic predisposition to PSP.
The atmosphere is composed of 78% nitrogen and 21% oxygen. Since oxygen is exchanged at the alveoli-capillary membrane, nitrogen is a major component for the alveoli's state of inflation. If a large volume of nitrogen in the lungs is replaced with oxygen, the oxygen may subsequently be absorbed into the blood, reducing the volume of the alveoli, resulting in a form of alveolar collapse known as absorption atelectasis.
Since ARDS is an extremely serious condition which requires invasive forms of therapy it is not without risk. Complications to be considered include the following:
- Pulmonary: barotrauma (volutrauma), pulmonary embolism (PE), pulmonary fibrosis, ventilator-associated pneumonia (VAP)
- Gastrointestinal: bleeding (ulcer), dysmotility, pneumoperitoneum, bacterial translocation
- Cardiac: abnormal heart rhythms, myocardial dysfunction
- Kidney: acute kidney failure, positive fluid balance
- Mechanical: vascular injury, pneumothorax (by placing pulmonary artery catheter), tracheal injury/stenosis (result of intubation and/or irritation by endotracheal tube
- Nutritional: malnutrition (catabolic state), electrolyte deficiency.
The rate of BPD varies among institutions, which may reflect neonatal risk factors, care practices (e.g., target levels for acceptable oxygen saturation), and differences in the clinical definitions of BPD.
Asbestos can cause lung cancer that is identical to lung cancer from other causes. Exposure to asbestos is associated with all major histological types of lung carcinoma (adenocarcinoma, squamous cell carcinoma, large-cell carcinoma and small-cell carcinoma). The latency period between exposure and development of lung cancer is 20 to 30 years. It is estimated that 3%-8% of all lung cancers are related to asbestos. The risk of developing lung cancer depends on the level, duration, and frequency of asbestos exposure (cumulative exposure). Smoking and individual susceptibility are other contributing factors towards lung cancer. Smokers who have been exposed to asbestos are at far greater risk of lung cancer. Smoking and asbestos exposure have a multiplicative (synergistic) effect on the risk of lung cancer. Symptoms include chronic cough, chest pain, breathlessness, haemoptysis (coughing up blood), wheezing or hoarseness of the voice, weight loss and fatigue. Treatment involves surgical removal of the cancer, chemotherapy, radiotherapy, or a combination of these (multimodality treatment). Prognosis is generally poor unless the cancer is detected in its early stages. Out of all patients diagnosed with lung cancer, only 15% survive for five years after diagnosis.
Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.
When a pleural effusion has been determined to be exudative, additional evaluation is needed to determine its cause, and amylase, glucose, pH and cell counts should be measured.
- Red blood cell counts are elevated in cases of bloody effusions (for example after heart surgery or hemothorax from incomplete evacuation of blood).
- Amylase levels are elevated in cases of esophageal rupture, pancreatic pleural effusion, or cancer.
- Glucose is decreased with cancer, bacterial infections, or rheumatoid pleuritis.
- pH is low in empyema (<7.2) and may be low in cancer.
- If cancer is suspected, the pleural fluid is sent for cytology. If cytology is negative, and cancer is still suspected, either a thoracoscopy, or needle biopsy of the pleura may be performed.
- Gram staining and culture should also be done.
- If tuberculosis is possible, examination for "Mycobacterium tuberculosis" (either a Ziehl–Neelsen or Kinyoun stain, and mycobacterial cultures) should be done. A polymerase chain reaction for tuberculous DNA may be done, or adenosine deaminase or interferon gamma levels may also be checked.
The most common causes of exudative pleural effusions are bacterial pneumonia, cancer (with lung cancer, breast cancer, and lymphoma causing approximately 75% of all malignant pleural effusions), viral infection, and pulmonary embolism.
Another common cause is after heart surgery, when incompletely drained blood can lead to an inflammatory response that causes exudative pleural fluid.
Conditions associated with exudative pleural effusions:
- Parapneumonic effusion due to pneumonia
- Malignancy (either lung cancer or metastases to the pleura from elsewhere)
- Infection (empyema due to bacterial pneumonia)
- Trauma
- Pulmonary infarction
- Pulmonary embolism
- Autoimmune disorders
- Pancreatitis
- Ruptured esophagus (Boerhaave's syndrome)
- Rheumatoid pleurisy
- Drug-induced lupus
The most common causes of transudative pleural effusions in the United States are heart failure and cirrhosis. Nephrotic syndrome, leading to the loss of large amounts of albumin in urine and resultant low albumin levels in the blood and reduced colloid osmotic pressure, is another less common cause of pleural effusion. Pulmonary emboli were once thought to cause transudative effusions, but have been recently shown to be exudative.
The mechanism for the exudative pleural effusion in pulmonary thromboembolism is probably related to increased permeability of the capillaries in the lung, which results from the release of cytokines or inflammatory mediators (e.g. vascular endothelial growth factor) from the platelet-rich blood clots. The excessive interstitial lung fluid traverses the visceral pleura and accumulates in the pleural space.
Conditions associated with transudative pleural effusions include:
- Congestive heart failure
- Liver cirrhosis
- Severe hypoalbuminemia
- Nephrotic syndrome
- Acute atelectasis
- Myxedema
- Peritoneal dialysis
- Meigs' syndrome
- Obstructive uropathy
- End-stage kidney disease
Rupture of the trachea or bronchus is the most common type of blunt injury to the airway. It is difficult to determine the incidence of TBI: in as many as 30–80% of cases, death occurs before the person reaches a hospital, and these people may not be included in studies. On the other hand, some TBI are so small that they do not cause significant symptoms and are therefore never noticed. In addition, the injury sometimes is not associated with symptoms until complications develop later, further hindering estimation of the true incidence. However, autopsy studies have revealed TBI in 2.5–3.2% of people who died after trauma. Of all neck and chest traumas, including people that died immediately, TBI is estimated to occur in 0.5–2%. An estimated 0.5% of polytrauma patients treated in trauma centers have TBI. The incidence is estimated at 2% in blunt chest and neck trauma and 1–2% in penetrating chest trauma. Laryngotracheal injuries occur in 8% of patients with penetrating injury to the neck, and TBI occurs in 2.8% of blunt chest trauma deaths. In people with blunt trauma who do reach a hospital alive, reports have found incidences of 2.1% and 5.3%. Another study of blunt chest trauma revealed an incidence of only 0.3%, but a mortality rate of 67% (possibly due in part to associated injuries). The incidence of iatrogenic TBI (that caused by medical procedures) is rising, and the risk may be higher for women and the elderly. TBI results about once every 20,000 times someone is intubated through the mouth, but when intubation is performed emergently, the incidence may be as high as 15%.
The mortality rate for people who reach a hospital alive was estimated at 30% in 1966; more recent estimates place this number at 9%. The number of people reaching a hospital alive has increased, perhaps due to improved prehospital care or specialized treatment centers. Of those who reach the hospital alive but then die, most do so within the first two hours of arrival. The sooner a TBI is diagnosed, the higher the mortality rate; this is likely due to other accompanying injuries that prove fatal.
Accompanying injuries often play a key role in the outcome. Injuries that may accompany TBI include pulmonary contusion and laceration; and fractures of the sternum, ribs and clavicles. Spinal cord injury, facial trauma, traumatic aortic rupture, injuries to the abdomen, lung, and head are present in 40–100%. The most common accompanying injury is esophageal perforation or rupture (known as Boerhaave syndrome), which occurs in as many as 43% of the penetrating injuries to the neck that cause tracheal injury.
Alveolar lung disease may be divided into acute or chronic. Causes of acute alveolar lung disease include pulmonary edema (cardiogenic or neurogenic), pneumonia (bacterial or viral), pulmonary embolism, systemic lupus erythematosus, bleeding in the lungs (e.g., Goodpasture syndrome), idiopathic pulmonary hemosiderosis, and granulomatosis with polyangiitis.
Chronic alveolar lung disease can be caused by pulmonary alveolar proteinosis, alveolar cell carcinoma, mineral oil pneumonia, sarcoidosis (alveolar form), lymphoma, tuberculosis, metastases, or desquamative interstitial pneumonia.
Rare cases of BOOP have induced with lobar cicatricial atelectasis.
It was identified in 1985, although its symptoms had been noted before but not recognised as a separate lung disease. The risk of BOOP is higher for people with inflammatory diseases like lupus, dermatomyositis, rheumatoid arthritis, and scleroderma.
Asbestosis is a chronic lung disease caused by scarring of lung tissue, which results from prolonged exposure to asbestos. It is defined as diffuse interstitial pulmonary fibrosis secondary to asbestos exposure. It initially affects the lung bases and usually manifests after 15 or more years from initial exposure. It occurs after high intensity and/or long-term exposure to asbestos. Asbestos-related fibrosis is progressive because it continues to progress in the lung even if no further asbestos is inhaled. The scar tissue causes the alveolar walls to thicken, reducing the lung capacity which leads to the patient experiencing shortness of breath (dyspnea). Sufferers are at an increased risk for heart failure and certain malignancies.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
Most people with TBI who die do so within minutes of the injury, due to complications such as pneumothorax and insufficient airway and to other injuries that occurred at the same time. Most late deaths that occur in TBI are attributed to sepsis or multiple organ dysfunction syndrome (MODS). If the condition is not recognized and treated early, serious complications are more likely to occur; for example, pneumonia and bronchiectasis may occur as late complications. Years can pass before the condition is recognized. Some TBI are so small that they do not have significant clinical manifestations; they may never be noticed or diagnosed and may heal without intervention.
If granulation tissue grows over the injured site, it can cause stenosis of the airway, after a week to a month. The granulation tissue must be surgically excised. Delayed diagnosis of a bronchial rupture increases risk of infection and lengthens hospital stay. People with a narrowed airway may suffer dyspnea, coughing, wheezing, respiratory tract infection, and difficulty with clearing secretions. If the bronchiole is completely obstructed, atelectasis occurs: the alveoli of the lung collapse. Lung tissue distal to a completely obstructed bronchiole often does not become infected. Because it is filled with mucus, this tissue remains functional. When the secretions are removed, the affected portion of the lung is commonly able to function almost normally. However, infection is common in lungs distal to a partially obstructed bronchiole. Infected lung tissue distal to a stricture can be damaged, and wheezing and coughing may develop due to the narrowing. In addition to pneumonia, the stenosis may cause bronchiectasis, in which bronchi are dilated, to develop. Even after an airway with a stricture is restored to normal, the resulting loss of lung function may be permanent.
Complications may also occur with treatment; for example a granuloma can form at the suture site. Also, the sutured wound can tear again, as occurs when there is excessive pressure in the airways from ventilation. However, for people who do receive surgery soon after the injury to repair the lesion, outcome is usually good; the long-term outcome is good for over 90% of people who have TBI surgically repaired early in treatment. Even when surgery is performed years after the injury, the outlook is good, with low rates of death and disability and good chances of preserving lung function.
The mortality rate of meconium-stained infants is considerably higher than that of non-stained infants; meconium aspiration used to account for a significant proportion of neonatal deaths. Residual lung problems are rare but include symptomatic cough, wheezing, and persistent hyperinflation for up to five to ten years. The ultimate prognosis depends on the extent of CNS injury from asphyxia and the presence of associated problems such as pulmonary hypertension. Fifty percent of newborns affected by meconium aspiration would die fifteen years ago; however, today the percent has dropped to about twenty.
In a study conducted between 1995 and 2002, MAS occurred in 1,061 of 2,490,862 live births, reflecting an incidence of 0.43 of 1,000. MAS requiring intubation occurs at higher rates in pregnancies beyond 40 weeks. 34% of all MAS cases born after 40 weeks required intubation compared to 16% prior to 40 weeks.
A kitten that has difficulty in breathing is very likely also to suffer from colic (which can cause weight loss in the early development of a normal kitten), and a very small daily (or twice daily) dose of liquid paraffin (one or two drops placed on the tongue of the kitten, or 0.1 ml) should help to alleviate this problem. FCKS kittens who do not maintain weight are usually among the group which die, but many of them may simply be unable to feed properly due to colic, becoming increasingly weak and lethargic, and fading due to malnutrition as much as to the thoracic problems.
Colic has many causes, but in a kitten with respiratory difficulty it is possible that a malfunction during the breathing process leads the kitten to swallow air instead of taking it into its lungs. The GI tract fills with air while the lungs do not receive a proper air supply, preventing them from inflating fully. Pressure from the stomach exacerbates the condition. Treating for colic with liquid paraffin seems to shorten recovery time from 4–10 weeks to a matter of days.