Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Treatment of Ramsay Hunt Syndrome Type 1 is specific to individual symptoms. Myoclonus and seizures may be treated with drugs like valproate.
Some have described this condition as difficult to characterize.
The exact incidence of MELAS is unknown. It is one of the more common conditions in a group known as mitochondrial diseases. Together, mitochondrial diseases occur in about 1 in 4,000 people.
SUCLA2 and RRM2B related forms result in deformities to the brain. A 2007 study based on 12 cases from the Faroe Islands (where there is a relatively high incidence due to a founder effect) suggested that the outcome is often poor with early lethality. More recent studies (2015) with 50 people with SUCLA2 mutations, with range of 16 different mutations, show a high variability in outcomes with a number of people surviving into adulthood (median survival was 20 years. There is significant evidence (p = 0.020) that people with missense mutations have longer survival rates, which might mean that some of the resulting protein has some residual enzyme activity.
RRM2B mutations have been reported in 16 infants with severe encephalomyopathic MDS that is associated with early-onset (neonatal or infantile), multi-organ presentation, and mortality during infancy.
The TK2 related myopathic form results in muscle weakness, rapidly progresses, leading to respiratory failure and death within a few years of onset. The most common cause of death is pulmonary infection. Only a few people have survived to late childhood and adolescence.
RHS type 1 is caused by the impairment of a regulatory mechanism between cerebellar and brainstem nuclei and has been associated with a wide range of diseases, including Lafora disease, dentatorubropallidoluysian atrophy, and celiac disease.
Many other neurological conditions are associated with acanthocytosis but are not considered 'core' acanthocytosis syndromes. The commonest are:
- Pantothenate kinase-associated neurodegeneration, an autosomal recessive condition caused by mutations in "PANK2".
- Huntington's disease-like syndrome type 2, an autosomal dominant condition caused by mutations in "JPH3" that closely resembles Huntington's disease.
- Bassen-Kornzweig disease, or Bassen-Kornzweig Syndrome (see also History).
- Levine-Critchley syndrome (see History).
- Paroxysmal movement disorders associated with GLUT1 mutations.
- Familial acanthocytosis with paroxysmal exertion-induced dyskinesias and epilepsy (FAPED).
- Some cases of mitochondrial disease.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
GSS is one of a small number of diseases that are caused by prions, a class of pathogenic proteins highly resistant to proteases.
A change in codon 102 from proline to leucine has been found in the prion protein gene ("PRNP", on chromosome 20) of most affected individuals. Therefore, it appears this genetic change is usually required for the development of the disease.
Chorea-acanthocytosis (ChAc, also called Choreoacanthocytosis), is a rare hereditary disease caused by a mutation of the gene that directs structural proteins in red blood cells. It belongs to a group of four diseases characterized under the name Neuroacanthocytosis. When a patient's blood is viewed under a microscope, some of the red blood cells appear thorny. These thorny cells are called acanthocytes.
Other effects of the disease may include epilepsy, behaviour changes, muscle degeneration, and neuronal degradation similar to Huntington's Disease. The average age of onset of symptoms is 35 years. The disease is incurable and inevitably leads to premature death.
Some more information about Chorea-acanthocytosis is that it is a very complex autosomal recessive adult-onset neurodegenerative disorder. It often shows itself as a mixed movement disorder, in which chorea, tics, dystonia and even parkinsonism may appear as a symptom.
This disease is also characterized by the presence of a few different movement disorders including chorea, dystonia etc.
Chorea-acanthocytosis is considered an autosomal recessive disorder, although a few cases with autosomal dominant inheritance have been noted.
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive disorder of the nervous system that is characterized by a loss of intellectual functioning (dementia) and seizures. At first, affected individuals may have difficulty sustaining attention and concentrating. Their judgment, insight, and memory become impaired as the condition progresses. Over time, they lose the ability to perform the activities of daily living, and most people with this condition eventually require comprehensive care.
The signs and symptoms of familial encephalopathy with neuroserpin inclusion bodies vary in their severity and age of onset. In severe cases, the condition causes seizures and episodes of sudden, involuntary muscle jerking or twitching (myoclonus) in addition to dementia. These signs can appear as early as a person's teens. Less severe cases are characterized by a progressive decline in intellectual functioning beginning in a person's forties or fifties.
Mutations in the "SERPINI1" gene cause familial encephalopathy with neuroserpin inclusion bodies. The "SERPINI1" gene provides instructions for making a protein called neuroserpin. This protein is found in nerve cells, where it plays a role in the development and function of the nervous system. Neuroserpin helps control the growth of nerve cells and their connections with one another, which suggests that this protein may be important for learning and memory. Mutations in the gene result in the production of an abnormally shaped, unstable version of neuroserpin. Abnormal neuroserpin proteins can attach to one another and form clumps (called neuroserpin inclusion bodies or Collins bodies) within nerve cells. These clumps disrupt the cells' normal functioning and ultimately lead to cell death. Progressive dementia results from this gradual loss of nerve cells in certain parts of the brain. Researchers believe that a buildup of related, potentially toxic substances in nerve cells may also contribute to the signs and symptoms of this condition.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In many cases, an affected person has a parent with the condition.
Individuals with MBD usually have a history of alcohol abuse, but this is not always the case. The mechanism of the disease is not completely understood, but it is believed to be caused by a Vitamin B deficiency, malnutrition, or alcohol abuse. The damage to the brain can extend into neighboring white matter and sometimes go out as far as subcortical regions.
There are multiple symptoms that can help this disease to be diagnosed, this disease is marked by the presence of acanthocytes in blood (these acanthocytes can sometimes be absent or even make a late appearance in the course of the disease.) and neurodegeneration causing a choreiform movement disorder.
Another one of them would be that this disease should be considered in patients who have elevated levels of acanthocytes in a peripheral blood film.
The serum creatine kinase is often elevated in the body of the people who are affected by this disease.
People afflicted by this disease also experience a loss of neurons. Loss of neurons is a hallmark of neurodegenerative diseases. Due to the generally non-regenerative nature of neuronal cells in the adult central nervous system, this results in an irreversible and fatal process of neurodegeneration. There is also the presence of several movement related disorders including chorea, dystonia and bradykinesia, one of the more incapacitating ones includes Truncal spasms.
Treatment is variable depending on individuals. Some treatments work extremely well with some patients and not at all with others. Some treatments include Therapy with thiamine and vitamin B complex. Alcohol consumption should be stopped. Some patients survive, but with residual brain damage and dementia. Others remain in comas that eventually lead to death. Nutritional counseling is also recommended. Treatment is often similar to those administered for Wenicke-Korsakoff syndrome or for alcoholism.
Type A has 21% mortality rate and an 81% long-term disability rate. Type B has a 0% mortality rate and a 19% long-term disability rate.
The cause of MERRF disorder is due to the mitochondrial genomes mutation. This means that its a pathogenic variants in mtDNA and is transmitted by maternal inheritance. A four points mutations in the genome can be identified which are associated with MERRF: A8344G, T8356C, G8361A, and G8363A. The point mutation A8344G is mostly associated with MERRF, in a study published by Paul Jose Lorenzoni from the Department of neurology at University of Panama stated that 80% of the patients with MERRF disease exhibited this point mutation.This point mutation disrupts the mitochondrial gene for tRNA-Lys and so disrupts synthesis of proteins essential for oxidative phosphorylation.The remaining mutations only account for 10% of cases, and the remaining 10% of he patients with MERRF did not have an identifiable mutation in the mitochondrial DNA.
Many genes are involved. These genes include:
- MT-TK
- MT-TL1
- MT-TH
- MT-TS1
- MT-TS2
- MT-TF
It involves the following characteristics:
- progressive myoclonic epilepsy
- ""Ragged Red Fibers"" - clumps of diseased mitochondria accumulate in the subsarcolemmal region of the muscle fiber and appear as "Ragged Red Fibers" when muscle is stained with modified Gömöri trichrome stain .
There is currently no cure for MERRF.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
The journal of child neurology published a paper in 2012, Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF), discusses possible new methods to test for MERRF and other mitochondrial diseases, through a simple swabbing technique. This is a less invasive techniques which allows for an analysis of buccal mitochondrial DNA, and showed significant amounts of the common 5 kb and 7.4 kb mitochondrial DNA deletions, also detectable in blood. This study suggests that a buccal swab approach can be used to informatively examine mitochondrial dysfunction in children with seizures and may be applicable to screening mitochondrial disease with other clinical presentations.
Proceedings of the National Academy of Science of the United States of America published an article in 2007 which investigate the human mitochondrial tRNA (hmt-tRNA) mutations which are associated with mitochondrial myopathies. Since the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. All pathogenic mutants displayed pleiotropic phenotypes, with the exception of the G34A anticodon mutation, which solely affected aminoacylation.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
McLeod syndrome is an X-linked recessive disorder caused by mutations in the "XK" gene encoding the Kx blood type antigen, one of the Kell antigens.
Like the other neuroacanthocytosis syndromes, McLeod syndrome causes movement disorder, cognitive impairment and psychiatric symptoms. The particular features of McLeod syndrome are heart problems such as arrhythmia and dilated cardiomyopathy (enlarged heart).
McLeod syndrome is very rare. There are approximately 150 cases of McLeod syndrome worldwide. Because of its X-linked mode of inheritance, it is much more prevalent in males.
The progression of symptoms varies widely between each case of FXTAS; the onset of symptoms may be gradual, with progression of the disease spanning multiple years or decades. Alternatively, symptoms may progress rapidly.
FXTAS has shown strong age-dependent penetrance, afflicting older permutation carriers with greater prevalence. Male carriers, age 50 and above have a 30% chance of acquiring FXTAS, while male carriers, age 75 and above, have a 75% chance of developing FXTAS. While initially described to affect male carriers, female carriers of the FMR1 gene mutation have also been found to develop FXTAS. However, due to X-inactivation, female carriers are much less likely to develop classic ataxia and tremor signs for FXTAS, instead demonstrating symptoms such as fibromyalgia, thyroid disease, hypertension, and seizures.
About 1 in 4,000 children in the United States will develop mitochondrial disease by the age of 10 years. Up to 4,000 children per year in the US are born with a type of mitochondrial disease. Because mitochondrial disorders contain many variations and subsets, some particular mitochondrial disorders are very rare.
The average number of births per year among women at risk for transmitting mtDNA disease is estimated to approximately 150 in the United Kingdom and 800 in the United States.
PME accounts for less than 1% of epilepsy cases at specialist centres. The incidence and prevalence of PME is unknown, but there are considerable geography and ethnic variations amongst the specific genetic disorders. One cause, Unverricht Lundborg Disease, has an incidence of at least 1:20,000 in Finland.
Costeff syndrome, or 3-methylglutaconic aciduria type III, is a genetic disorder caused by mutations in the "OPA3" gene. It is typically associated with the onset of visual deterioration (optic atrophy) in early childhood followed by the development of movement problems and motor disability in later childhood, occasionally along with mild cases of cognitive deficiency. The disorder is named after Hanan Costeff, the doctor who first described the syndrome in 1989.
Antibodies against voltage-gated potassium channels (VGKC), which are detectable in about 40% of patients with acquired neuromytonia, have been implicated in Morvan’s pathophysiology. Raised serum levels of antibodies to VGKCs have been reported in three patients with Morvan’s Syndrome. Binding of serum from a patient with Morvan’s Syndrome to the hippocampus in a similar pattern of antibodies to known VGKC suggest that these antibodies can also cause CNS dysfunction. Additional antibodies against neuromuscular junction channels and receptors have also been described. Experimental evidence exists that these anti-VGKC antibodies cause nerve hyperexcitability by suppression of voltage gated K+ outward currents, whereas other, yet undefined humoral factors have been implicated in anti-VGKC antibody negative neuromyotonia. It is believed that antibodies to the Shaker-type K+ channels (the Kv1 family) are the type of potassium channel most strongly associated with acquired neuromyotonia and Morvan’s Syndrome.
Whether VGKC antibodies play a pathogenic role in the encephalopathy as they do in the peripheral nervous system is as yet unclear. It has been suggested that the VGKC antibodies may cross the blood–brain barrier and act centrally, binding predominantly to thalamic and striatal neurons causing encephalopathic and autonomic features.
In one case, a patient was diagnosed with both Morvan's syndrome and pulmonary hyalinizing granulomas (PHG). PHG are rare fibrosing lesions of the lung, which have central whorled deposits of lamellar collagen. How these two diseases relate to one another is still unclear.
Thymoma, prostate adenoma, and in situ carcinoma of the sigmoid colon have also been found in patients with Morvan’s Syndrome.
Variably protease-sensitive prionopathy (VPSPr) (formerly known as Protease Sensitive Prionopathy) is a sporadic prion protein disease identified in 2008 and first described in 2010 by Zou W.Q. and coworkers from the United States National Prion Disease Pathology Surveillance Center.
VPSPr is very rare, occurring in just 2 or 3 out of every 100 million people. (Nine cases had been identified in the UK by 2013.) It has similarities to Creutzfeldt–Jakob disease, but clinical manifestations differ somewhat, and the abnormal prion protein (PrP) is less resistant to digestion by proteases; some variants are more sensitve to proteases than others, hence the name: variably protease-sensitive.
Patients present with psychiatric symptoms, speech deficits (aphasia and/or dysarthria), and cognitive impairment. Ataxia and parkinsonism can develop. Average age at onset is 70 years, and duration of survival is 24 months. About 40% of patients have a family history of dementia.
Diagnosis is difficult. MRI, EEG, and tests for 14-3-3 protein and tau protein are usually not helpful, and no mutations have been observed in the coding region of the PrP gene.