Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Cardiovascular malformations (typically bicuspid aortic valve, coarctation of the aorta, and some other left-sided cardiac malformations) and hypertension predispose to aortic dilatation and dissection in the general population. Indeed, these same risk factors are found in more than 90% of patients with Turner syndrome who develop aortic dilatation. Only a small number of patients (around 10%) have no apparent predisposing risk factors. The risk of hypertension is increased three-fold in patients with Turner syndrome. Because of its relation to aortic dissection, blood pressure must be regularly monitored and hypertension should be treated aggressively with an aim to keep blood pressure below 140/80 mmHg. As with the other cardiovascular malformations, complications of aortic dilatation is commonly associated with 45,X karyotype.
The exact role that these risk factors play in the process leading to rupture is unclear. Aortic root dilatation is thought to be due to a mesenchymal defect as pathological evidence of cystic medial necrosis has been found by several studies. The association between a similar defect and aortic dilatation is well established in such conditions such as Marfan syndrome. Also, abnormalities in other mesenchymal tissues (bone matrix and lymphatic vessels) suggests a similar primary mesenchymal defect in patients with Turner syndrome. However, no evidence suggests that patients with Turner syndrome have a significantly higher risk of aortic dilatation and dissection in absence of predisposing factors. So, the risk of aortic dissection in Turner syndrome appears to be a consequence of structural cardiovascular malformations and hemodynamic risk factors rather than a reflection of an inherent abnormality in connective tissue. The natural history of aortic root dilatation is unknown, but because of its lethal potential, this aortic abnormality needs to be carefully followed.
The prognosis for patients diagnosed with Timothy syndrome is very poor. Of 17 children analyzed in one study, 10 died at an average age of 2.5 years. Of those that did survive, 3 were diagnosed with autism, one with an autism spectrum disorder, and the last had severe delays in language development. One patient with atypical Timothy syndrome was largely normal with the exception of heart arrhythmia. Likewise, the mother of two Timothy syndrome patients also carried the mutation but lacked any obvious phenotype. In both of these cases, however, the lack of severity of the disorder was due to mosaicism.
Asplenia with cardiovascular anomalies, also known as Ivemark syndrome and right atrial isomerism, is an example of a heterotaxy syndrome. These uncommon congenital disorders are characterized by defects in the heart, spleen and paired organs such as the lungs and kidneys. Another name is "asplenia-cardiovascular defect-heterotaxy".
Right atrial isomerism is named for its discoverer, Swedish pathologist Biörn Ivemark.
The cause of heterotaxy is unknown.
The Ivemark Syndrome Association, which is based in Dorset,
is one of the organisations dedicated to helping sufferrers and funding research.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
There are frequent associated congenital anomalies all related to deviations in the development of anatomical asymmetries in early embryonic stages. These conditions considered together are called "polysplenia syndrome".
Associated conditions include heterotaxy syndrome, intestinal malrotation, situs inversus, biliary atresia, and several cardiac malformations. Associated cardiac conditions include dextrocardia, atrial situs ambiguus, ventricular inversion, and VA concordance with left posterior aorta.
Although present, the multiple small spleens are often ineffective; this is termed functional asplenia.
It is unknown if heart-hand syndromes are caused by shared or distinct genetic defects. It has been claimed that congenital heart diseases are caused by a limited number of shared genetic defects.
Holt–Oram syndrome, Brachydactyly-long thumb syndrome, Patent ductus arteriosus-bicuspid aortic valve syndrome and Heart-hand syndrome, Slovenian type are known to be autosomally dominant disorders.
Brachydactyly-long thumb syndrome is known to have been transmitted from male-to-male in a single instance.
Patau syndrome is the result of trisomy 13, meaning each cell in the body has three copies of chromosome 13 instead of the usual two. A small percentage of cases occur when only some of the body's cells have an extra copy; such cases are called mosaic Patau.
Patau syndrome can also occur when part of chromosome 13 becomes attached to another chromosome (translocated) before or at conception in a Robertsonian translocation. Affected people have two copies of chromosome 13, plus extra material from chromosome 13 attached to another chromosome. With a translocation, the person has a partial trisomy for chromosome 13 and often the physical signs of the syndrome differ from the typical Patau syndrome.
Most cases of Patau syndrome are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called non-disjunction can result in reproductive cells with an abnormal number of chromosomes. For example, an egg or sperm cell may gain an extra copy of the chromosome. If one of these atypical reproductive cells contributes to the genetic makeup of a child, the child will have an extra chromosome 13 in each of the body's cells. Mosaic Patau syndrome is also not inherited. It occurs as a random error during cell division early in fetal development.
Patau syndrome due to a translocation can be inherited. An unaffected person can carry a rearrangement of genetic material between chromosome 13 and another chromosome. This rearrangement is called a balanced translocation because there is no extra material from chromosome 13. Although they do not have signs of Patau syndrome, people who carry this type of balanced translocation are at an increased risk of having children with the condition.
Heart-hand syndrome type 3 is very rare and has been described only in three members of a Spanish family. It is also known as Heart-hand syndrome, Spanish type.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Although its cause is poorly understood, situs ambiguous has been linked to family history of malformations and maternal cocaine use, suggesting both genetic and environmental factors play a role. Several genes in the TGF-beta pathway, which controls left-right patterning of viseral organs across the body axis, have been indicated in sporadic and familial cases of atrial isomerism.
There does not appear to be a screening method for prevention of heterotaxy syndrome. However, genetic testing in family members that display atrial isomerism or other cardiac malformations may help to discern risk for additional family members, especially in X-linked causes of heterotaxy syndrome.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Low-set ears are ears with depressed positioning of the pinna two or more standard deviations below the population average.
It can be associated with conditions such as:
- Down's syndrome
- Turner Syndrome
- Noonan syndrome
- Patau syndrome
- DiGeorge syndrome
- Cri du chat syndrome
- Edwards syndrome
- Fragile X syndrome
It is usually bilateral, but can be unilateral in Goldenhar syndrome.
Timothy syndrome is a rare autosomal dominant disorder characterized by physical malformations, as well as neurological and developmental defects, including heart QT-prolongation, heart arrhythmias, structural heart defects, syndactyly (webbing of fingers and toes) and autism spectrum disorders.
Timothy syndrome often ends in early childhood death.
Polysplenia or Chaudhrey's disease is a congenital disease manifested by multiple small accessory spleens, rather than a single, full-sized, normal spleen. Polysplenia sometimes occurs alone, but it is often accompanied by other developmental abnormalities. Conditions associated with polysplenia include gastrointestinal abnormalities, such as intestinal malrotation or biliary atresia, as well as cardiac abnormalities, such as dextrocardia.
Spanish researchers reported the development of a Costello mouse, with the G12V mutation, in early 2008. Although the G12V mutation is rare among children with Costello syndrome, and the G12V mouse does not appear to develop tumors as expected, information about the mouse model's heart may be transferrable to humans.
Italian and Japanese researchers published their development of a Costello zebrafish in late 2008, also with the G12V mutation. The advent of animal models may accelerate identification of treatment options.
Perlman syndrome is a rare disease with an estimated incidence of less than 1 in 1,000,000. As of 2008, less than 30 patients had ever been reported in the world literature.
Even in syndromes with no known etiology, the presence of the associated symptoms with a statistically improbable correlation, normally leads the researchers to hypothesize that there exists an unknown underlying cause for all the described symptoms.
Williams syndrome has historically been estimated to occur in roughly 1 in every 20,000 live births. However, more recent epidemiological studies have placed the occurrence rate at closer to 1 in every 7,500 live births, a significantly larger prevalence. As an increasing body of evidence suggests that Williams syndrome is more common than originally noted (approximately 6% of all genetic cases of developmental disability), researchers have begun to theorize past under-diagnosis of the syndrome. One theorized reason for the increase in epidemiological estimates is that there exists a substantial minority of individuals with the genetic markers of Williams syndrome who lack the characteristic facial features or the diminished IQ considered to be diagnostic of the syndrome, who often are not immediately recognized as people with the syndrome.
Fraser syndrome (also known as Meyer-Schwickerath's syndrome, Fraser-François syndrome, or Ullrich-Feichtiger syndrome) is an autosomal recessive congenital disorder. Fraser syndrome is named for the geneticist George R. Fraser, who first described the syndrome in 1962.
Perlman syndrome (PS) (also called renal hamartomas, nephroblastomatosis and fetal gigantism) is a rare overgrowth disorder present at birth. It is characterized by polyhydramnios and fetal overgrowth, including macrocephaly, neonatal macrosomia, visceromegaly, dysmorphic facial features, and an increased risk for Wilms' tumor at an early age. The prognosis for Perlman syndrome is poor and it is associated with a high neonatal mortality.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.