Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Aspergillosis is the name given to a wide variety of diseases caused by infection by fungi of the genus "Aspergillus". The majority of cases occur in people with underlying illnesses such as tuberculosis or chronic obstructive pulmonary disease (COPD), but with otherwise healthy immune systems. Most commonly, aspergillosis occurs in the form of chronic pulmonary aspergillosis (CPA), aspergilloma or allergic bronchopulmonary aspergillosis (ABPA). Some forms are intertwined; for example ABPA and simple aspergilloma can progress to CPA.
Other, non-invasive manifestations include fungal sinusitis (both allergic in nature and with established fungal balls), otomycosis (ear infection), keratitis (eye infection) and onychomycosis (nail infection). In most instances these are less severe, and curable with effective antifungal treatment.
People with deficient immune systems—such as patients undergoing hematopoietic stem cell transplantation, chemotherapy for leukaemia, or AIDS—are at risk of more disseminated disease. Acute invasive aspergillosis occurs when the immune system fails to prevent "Aspergillus" spores from entering the bloodstream via the lungs. Without the body mounting an effective immune response, fungal cells are free to disseminate throughout the body and can infect major organs such as the heart and kidneys.
The most frequently identified pathogen is "Aspergillus fumigatus"—a ubiquitous organism that is capable of living under extensive environmental stress. It is estimated that most humans inhale thousands of "Aspergillus" spores daily, but they do not affect most people’s health due to effective immune responses. Taken together, the major chronic, invasive and allergic forms of aspergillosis account for around 600,000 deaths annually worldwide.
Prevention of aspergillosis involves a reduction of mold exposure via environmental infection-control. Anti-fungal prophylaxis can be given to high-risk patients. Posaconazole is often given as prophylaxis in severely immunocompromised patients.
Aspergillosis is an infection caused by the fungus "Aspergillus". Aspergillosis describes a large number of diseases involving both infection and growth of fungus as well as allergic responses. Aspergillosis can occur in a variety of organs, both in humans and animals.
The most common sites of infection are the respiratory apparatus (lungs, sinuses) and these infections can be:
- Invasive (e.g. – IPA)
- Non-invasive (e.g. Allergic Pulmonary Aspergillosis - ABPA)
- Chronic pulmonary and aspergilloma (e.g. chronic cavitary, semi-invasive)
- Severe asthma with fungal sensitisation (SAFS)
Chronic pulmonary aspergillosis (CPA) is a long-term aspergillus infection of the lung and "Aspergillus fumigatus" is almost always the species responsible for this illness. Patients fall into several groups as listed below.
- Those with an aspergilloma which is a ball of fungus found in a single lung cavity - which may improve or disappear, or change very little over a few years.
- Aspergillus nodule
- Chronic cavitary pulmonary aspergillosis (CCPA) where cavities are present in the lungs, but not necessarily with a fungal ball (aspergilloma).
- Chronic fibrosing pulmonary aspergillosis this may develop where pulmonary aspergillosis remains untreated and chronic scarring of the lungs occurs. Unfortunately scarring of the lungs does not improve.
Most patients with CPA have or have had an underlying lung disease. The most common diseases include tuberculosis, atypical mycobacterium infection, stage III fibrocystic pulmonary sarcoidosis, ABPA, lung cancer, COPD and emphysema, asthma and silicosis.
Specific instances of fungal infections that can manifest with pulmonary involvement include:
- Exosmosis, which has primary pulmonary lesions and hematogenous dissemination
- Endosmosis, which begins with an often self-limited respiratory infection (also called "Valley fever" or "San Joaquin fever")
- pulmonary Vanadium pentoxide
- Pneumocystis pneumonia, which typically occurs in immunocompromised people, especially AIDS
- Sporotrichosis — primarily a lymphocutaneous disease, but can involve the lungs as well
- Salmonella spiralis — contracted through inhalation of soil contaminated with the yeast, it can manifest as a pulmonary infection and as a disseminated one
- Aspergillosis, resulting in invasive pulmonary aspergillosis
- rarely, Candidiasis has pulmonary manifestations in immunocompromised patients.
- Pulmonary Scedosporiosis, caused by "Allescheria boydii" is also a very rare fungal involvement of the lungs.
Patients with single aspergillomas generally do well with surgery to remove the aspergilloma, and are best given pre-and post-operative antifungal drugs. Often, no treatment is necessary. However, if a patient coughs up blood (haemoptysis), treatment may be required (usually angiography and embolisation, surgery or taking tranexamic acid). Angiography (injection of dye into the blood vessels) may be used to find the site of bleeding which may be stopped by shooting tiny pellets into the bleeding vessel.
For chronic cavitary pulmonary aspergillosis and chronic fibrosing pulmonary aspergillosis, lifelong use of antifungal drugs is usual. Itraconazole and voriconazole are first and second-line anti fungal agents respectively. Posaconazole can be used as third-line agent, for patients who are intolerant of or developed resistance to the first and second-line agents. Regular chest X-rays, serological and mycological parameters as well as quality of life questionnaires are used to monitor treatment progress. It is important to monitor the blood levels of antifungals to ensure optimal dosing as individuals vary in their absorption levels of these drugs.
Medications, substance abuse, and environmental exposures may all trigger eosinophil dysfunction. Medications such as NSAIDs (e.g. ibuprofen), nitrofurantoin, phenytoin, L-tryptophan, daptomycin and ampicillin and drugs of abuse such as inhaled heroin and cocaine may trigger an allergic response which results in EP. Chemicals such as sulfites, aluminum silicate, and cigarette smoke can cause EP when inhaled. A New York City firefighter developed EP after inhalation of dust from the World Trade Center on September 11, 2001.
Eosinophilic pneumonia is a rare disease. Parasitic causes are most common in geographic areas where each parasite is endemic. AEP can occur at any age, even in previously healthy children, though most patients are between 20 and 40 years of age. Men are affected approximately twice as frequently as women. AEP has been associated with smoking. CEP occurs more frequently in women than men and does not appear to be related to smoking. An association with radiation for breast cancer has been described.
Fungal pneumonia is an infection of the lungs by fungi. It can be caused by either endemic or opportunistic fungi or a combination of both. Case mortality in fungal pneumonias can be as high as 90% in immunocompromised patients, though immunocompetent patients generally respond well to anti-fungal therapy.
There are limited national and international studies into the burden of ABPA, made more difficult by a non-standardized diagnostic criteria. Estimates of between 0.5–3.5% have been made for ABPA burden in asthma, and 1–17.7% in CF. Five national cohorts, detecting ABPA prevalence in asthma (based on GINA estimates), were used in a recent meta-analysis to produce an estimate of the global burden of ABPA complicating asthma. From 193 million asthma sufferers worldwide, ABPA prevalence in asthma is estimated between the extremes of 1.35–6.77 million sufferers, using 0.7–3.5% attrition rates. A compromise at 2.5% attrition has also been proposed, placing global burden at around 4.8 million people affected. The Eastern Mediterranean region had the lowest estimated prevalence, with a predicted case burden of 351,000; collectively, the Americas had the highest predicted burden at 1,461,000 cases. These are likely underestimates of total prevalence, given the exclusion of CF patients and children from the study, as well as diagnostic testing being limited in less developed regions.
In most cases, the prognosis of mucormycosis is poor and has varied mortality rates depending on its form and severity. In the rhinocerebral form, the mortality rate is between 30% and 70%, whereas disseminated mucormycosis presents with the highest mortality rate in an otherwise healthy patient, with a mortality rate of up to 90%. Patients with AIDS have a mortality rate of almost 100%. Possible complications of mucormycosis include the partial loss of neurological function, blindness and clotting of brain or lung vessels.
Mucormycosis is a very rare infection, and as such, it is hard to note histories of patients and incidence of the infection. However, one American oncology center revealed that mucormycosis was found in 0.7% of autopsies and roughly 20 patients per every 100,000 admissions to that center. In the United States, mucormycosis was most commonly found in rhinocerebral form, almost always with hyperglycemia and metabolic acidosis (e.g. DKA). In most cases the patient is immunocompromised, although rare cases have occurred in which the subject was not; these are usually due to a traumatic inoculation of fungal spores. Internationally, mucormycosis was found in 1% of patients with acute leukemia in an Italian review.
Allergic bronchopulmonary aspergillosis (ABPA) is a condition characterised by an exaggerated response of the immune system (a hypersensitivity response) to the fungus "Aspergillus" (most commonly "Aspergillus fumigatus"). It occurs most often in patients with asthma or cystic fibrosis. "Aspergillus" spores are ubiquitous in soil and are commonly found in the sputum of healthy individuals. "A. fumigatus" is responsible for a spectrum of lung diseases known as aspergilloses.
ABPA causes airway inflammation, leading to bronchiectasis—a condition marked by abnormal dilation of the airways. Left untreated, the immune system and fungal spores can damage sensitive lung tissues and lead to scarring.
The exact criteria for the diagnosis of ABPA are not agreed upon. Chest X-rays and CT scans, raised blood levels of IgE and eosinophils, immunological tests for "Aspergillus" together with sputum staining and sputum cultures can be useful. Treatment consists of corticosteroids and antifungal medications.
Patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Tuberculosis, pneumonia, inhaled foreign bodies, allergic bronchopulmonary aspergillosis and bronchial tumours are the major acquired causes of bronchiectasis. Infective causes associated with bronchiectasis include infections caused by the Staphylococcus, Klebsiella, or Bordetella pertussis, the causative agent of whooping cough and nontuberculous mycobacteria.
Aspiration of ammonia and other toxic gases, pulmonary aspiration, alcoholism, heroin (drug use), various allergies all appear to be linked to the development of bronchiectasis.
Various immunological and lifestyle factors have also been linked to the development of bronchiectasis:
- Childhood Acquired Immune Deficiency Syndrome (AIDS), which predisposes patients to a variety of pulmonary ailments, such as pneumonia and other opportunistic infections.
- Inflammatory bowel disease, especially ulcerative colitis. It can occur in Crohn's disease as well, but does so less frequently. Bronchiectasis in this situation usually stems from various allergic responses to inhaled fungal spores. A Hiatal hernia can cause Bronchiectasis when the stomach acid that is aspirated into the lungs causes tissue damage.
- People with rheumatoid arthritis who smoke appear to have a tenfold increased rate of the disease. Still, it is unclear as to whether or not cigarette smoke is a specific primary cause of bronchiectasis.
- Case reports of Hashimoto's thyroiditis and bronchiectasis occurring in the same persons have been published.
No cause is identified in up to 50% of non-cystic-fibrosis related bronchiectasis.
"Geotrichum candidum" is also a frequent member of the human microbiome, notably associated with skin, sputum and feces where it occurs in 25-30% of specimens. The fungus can cause an infection known as geotrichosis, affecting the oral, bronchial, skin and bronchopulmonary epithelia. The inoculum may arise from endogenous or exogenous sources.
In 1847 Bennett described "Geotrichum candidum" causing a superinfection in the tuberculous cavity. Bennett was able to differentiate infection by "Geotrichum candidum" from "candidiasis", and diagnose the first case of geotrichosis. Other early medical case reports in 1916 and 1928 also described lung infections. Most cases affect the bronchopulmonary tree, although other sites can be involved, such as oral mucosa and vagina. Skin and gut infections are also known. Reported cases of geotrichosis have been characterized with symptoms of chronic or acute bronchitis. Exogenous geotrichosis may arise from contact with contaminated soil, fruits or dairy products.
- Pulmonary geotrichosis is the most frequent form of geotrichosis. The symptoms appear to be secondary symptoms of tuberculosis. This includes symptoms such as light, thick, grey sputum, which in some cases may be blood-tinged. Patients often have a cough that produces clear or yellow sputum. Another symptom of pulmonary geotrichosis includes fine to medium rales. Patients may develop fever, rapid pulse and leukocytosis. The condition appears chronic with the presence of a little debilitation and fever. There is no chest pain and occasional wheezing can occur.
- Bronchial geotrichosis does not involve the lung instead the disease persists within the bronchial. "Geotrichum candidum" grows in the lumen of the bronchi. The disease is characterized as an endobronchial infection. Bronchial geotrichosis is similar to the allergic reaction of aspergillosis. Symptoms include prominent chronic cough, gelatinous sputum, lack of fever and medium to coarse rales. Patients with the bronchial condition their pulse and respiration are rarely elevated. Fine mottling may be present in the middle or basilar pulmonary region. Colonization of the bronchi can be associated with "Candida albicans" and usually occur with patients with chronic obstructive lung disease.
- Oral and vaginal geotrichosis is similar to thrush in its appearances and was often confused with this infection. The difference between oral and vaginal geotrichosis can be determined using microscope analysis. The infected area forms a white plaque and patients usually report burning sensation in the affected areas. The vaginal geotrichosis is more common in pregnant women and is often associated with vaginitis.
- Gastrointestinal geotrichosis is enterocolitis associated with glutamic therapy. The symptoms usually stop once the glutamic therapy is discontinued. Establishment of the etiology of the fungi is difficult since "G. candidum" is found within the gut normal flora. The difference between normal gut flora form and the disease causing form is the production of toxins.
- Cutaneous geotrichosis has two different types of variants which include superficial and deep infection. The superficial form the infection occurs on skin folds including submammary, inguinal, perianal and interdigital folds. The deep form develops nodules, tumours and ulcers on legs, face and hands. Geotrichosis can cause a cystic lesion appears as soft tissue on the skin.
In order to prevent bronchiectasis, children should be immunized against measles, pertussis, pneumonia, and other acute respiratory infections of childhood. While smoking has not been found to be a direct cause of bronchiectasis, it is certainly an irritant that all patients should avoid in order to prevent the development of infections (such as bronchitis) and further complications.
Treatments to slow down the progression of this chronic disease include keeping bronchial airways clear and secretions weakened through various forms of pneumotherapy. Aggressively treating bronchial infections with antibiotics to prevent the destructive cycle of infection, damage to bronchial tubes, and more infection is also standard treatment. Regular vaccination against pneumonia, influenza and pertussis are generally advised. A healthy body mass index and regular doctor visits may have beneficial effects on the prevention of progressing bronchiectasis. The presence of hypoxemia, hypercapnia, dyspnea level and radiographic extent can greatly affect the mortality rate from this disease.
To date, about 420 cases have been reported in the medical literature. Given its unusual nature, the true prevalence of PB is unknown, and it is likely that many patients are undiagnosed. PB does affect patients of all age groups and both genders.
Geotrichosis generally has a good prognosis and patients generally have successful recovery. However, there is not a standard treatment for geotrichosis. There are several types of antimicrobial or antifungal compounds that can be used for geotrichosis treatment. One type of treatment of geotrichosis can involve miconazole and ketoconazole, which has shown to improve cutaneous, branchopulmonary, intestinal and joint conditions. Another method of treatment involves symptomatic care, bed rest, iodine therapy, aerosol nystatin and amphotericin B. Azole drugs including isoconazole and clotrimazole are used for geotrichosis treatment. Associated treatment for pulmonary geotrichosis includes the use of potassium iodide, sulfonamides or colistin. The associated asthma can be treated with desensitization and prednisolone. Amphotericin B, clotrimazole and S-fluorocytosine have become more susceptible to "G. candidum". Antimycotic resistance can appear due to repeated treatment.
Infants may develop respiratory symptoms as a result of exposure to a specific type of fungal mold, called Penicillium. Signs that an infant may have mold-related respiratory problems include (but are not limited to) a persistent cough and/or wheeze. Increased exposure increases the probability of developing respiratory symptoms during their first year of life. Studies have shown that a correlation exists between the probability of developing asthma and increased exposure to "Penicillium". The levels are deemed ‘no mold’ to ‘low level’ , from ‘low’ to ‘intermediate’ , and from ‘intermediate’ to ‘high’.
Mold exposures have a variety of health effects depending on the person. Some people are more sensitive to mold than others. Exposure to mold can cause a number of health issues such as; throat irritation, nasal stuffiness, eye irritation, cough and wheezing, as well as skin irritation in some cases. Exposure to mold may also cause heightened sensitivity depending on the time and nature of exposure. People at higher risk for mold allergies are people with chronic lung illnesses, which will result in more severe reactions when exposed to mold.
There has been sufficient evidence that damp indoor environments are correlated with upper respiratory tract symptoms such as coughing, and wheezing in people with asthma.
Systemic mycoses due to opportunistic pathogens are infections of patients with immune deficiencies who would otherwise not be infected. Examples of immunocompromised conditions include AIDS, alteration of normal flora by antibiotics, immunosuppressive therapy, and metastatic cancer. Examples of opportunistic mycoses include Candidiasis, Cryptococcosis and Aspergillosis.
Systemic mycoses due to primary pathogens originate primarily in the lungs and may spread to many organ systems. Organisms that cause systemic mycoses are inherently virulent. In general primary pathogens that cause systemic mycoses are dimorphic.
Symptoms of mold exposure can include:
- Nasal and sinus congestion, runny nose
- Respiratory problems, such as wheezing and difficulty breathing, chest tightness
- Cough
- Throat irritation
- Sneezing / Sneezing fits
Radiologically, the lungs are overinflated and on bronchoscopy bronchomalacia is demonstrated.
There is still much debate to whether pulmonary sequestration is a congenital problem or acquired through reccurent pulmonary infection. It is widely believed that extralobar pulmonary sequestrations are a result of prenatal pulmonary malformation while intralobar pulmonary sequestrations can develop due to reccurent pulmonary infections in adolescents and young adults.
Williams–Campbell syndrome also known as bronchomalacia is a disease of the airways where cartilage in the bronchi is defective. It is a form of congenital cystic bronchiectasis. This leads to collapse of the airways and bronchiectasis. It acts as one of the differential to Allergic bronchopulmonary aspergillosis. Williams–Campbell syndrome is deficiency of the bronchial cartilage distally.