Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
The life expectancy of patients with homocystinuria is reduced only if untreated. It is known that before the age of 30, almost one quarter of patients die as a result of thrombotic complications (e.g., heart attack).
A 2011 review of 176 cases found that diagnoses made early in life (within a few days of birth) were associated with more severe disease and a mortality of 33%. Children diagnosed later, and who had milder symptoms, showed a lower mortality rate of ~3%.
Vegetarian diets and, for younger children, breastfeeding are common ways to limit protein intake without endangering tryptophan transport to the brain.
Classical homocystinuria, also known as cystathionine beta synthase deficiency or CBS deficiency, is an inherited disorder of the metabolism of the amino acid methionine, often involving cystathionine beta synthase. It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
Incomplete list of various fatty-acid metabolism disorders.
- Carnitine Transport Defect
- Carnitine-Acylcarnitine Translocase (CACT) Deficiency
- Carnitine Palmitoyl Transferase I & II (CPT I & II) Deficiency
- 2,4 Dienoyl-CoA Reductase Deficiency
- Electron Transfer Flavoprotein (ETF) Dehydrogenase Deficiency (GAII & MADD)
- 3-Hydroxy-3 Methylglutaryl-CoA Lyase (HMG) Deficiency
- Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency)
- Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)
- Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD deficiency)
- Short-chain acyl-coenzyme A dehydrogenase deficiency (SCAD deficiency)
- 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (M/SCHAD deficiency)
Isovaleric acidemia is estimated to affect at least 1 in 250,000 births in the United States.
Iron deficiency can be avoided by choosing appropriate soil for the growing conditions (e.g., avoid growing acid loving plants on lime soils), or by adding well-rotted manure or compost. If iron deficit chlorosis is suspected then check the pH of the soil with an appropriate test kit or instrument. Take a soil sample at surface and at depth. If the pH is over seven then consider soil remediation that will lower the pH toward the 6.5 - 7 range. Remediation includes: i) adding compost, manure, peat or similar organic matter (warning. Some retail blends of manure and compost have pH in the range 7 - 8 because of added lime. Read the MSDS if available. Beware of herbicide residues in manure. Source manure from a certified organic source.) ii) applying Ammonium Sulphate as a Nitrogen fertilizer (acidifying fertilizer due to decomposition of ammonium ion to nitrate in the soil and root zone) iii) applying elemental Sulphur to the soil (oxidizes over the course of months to produce sulphate/sulphite and lower pH). Note: adding acid directly e.g. sulphuric/hydrochloric/citric acid is dangerous as you may mobilize metal ions in the soil that are toxic and otherwise bound. Iron can be made available immediately to the plant by the use of iron sulphate or iron chelate compounds. Two common iron chelates are Fe EDTA and Fe EDDHA. Iron sulphate (Iron(II)_sulfate) and iron EDTA are only useful in soil up to PH 7.1 but they can be used as a foliar spray (Foliar_feeding). Iron EDDHA is useful up to PH 9 (highly alkaline) but must be applied to the soil and in the evening to avoid photodegradation. EDTA in the soil may mobilize Lead, EDDHA does not appear to.
There are many studies about LID and the frequency varies according to country of origin, diet, pregnancy status age, gender, etc. Depending on these previous conditions, the frequency can change from 11% in male athletes (Poland) to 44.7% in children less than 1 year old (China):
Frequency of LID in different countries and populations:
- Poland: 14 of LID (11%) in 131 male athletes and 31 of ID (26%) in 121 female athletes
- India: 27.5% of LID amongst student nurses
- Spain: 14.7% of LID in 211 women of child-bearing age in Barcelona
- China: In 3591 pregnant women and 3721 premenopausal from 15 provinces. It was found: LID 42.6% in pregnant women (urban first-trimester 41.9%) (rural 36.1%) while 34.4% of LID in premenopausal non-pregnant women (urban 35.6%)(rural 32.4%). Pediatric samples: In 9118 children from 31 provinces aged 7 months to 7 years, the global incidence of LID in children was 32.5%. Sub-classifying the cases according to age and origin (global/countryside): less than 1 y (7m to 12m) LID 44.7% (35.8% in countryside), 1 – 3 years LID 35.9% (31% in countryside), 4 to 7 years (LID 26.5%) (30.1% in countryside).
Administration of cytidine monophosphate and uridine monophosphate reduces urinary orotic acid and ameliorates the anemia.
Administration of uridine, which is converted to UMP, will bypass the metabolic block and provide the body with a source of pyrimidine.
Uridine triacetate is a drug approved by FDA to be used in the treatment of hereditary orotic aciduria.
There is no consensus on how to treat LID but one of the options is to treat it as an iron-deficiency anemia with ferrous sulfate (Iron(II) sulfate) at a dose of 100 mg x day in two doses (one at breakfast and the other at dinner) or 3 mg x Kg x day in children (also in two doses) during two or three months. The ideal would be to increase the deposits of body iron, measured as levels of ferritin in serum, trying to achieve a ferritin value between 30 and 100 ng/mL. Another clinical study has shown an increase of ferritin levels in those taking iron compared with others receiving a placebo from persons with LID. With ferritin levels higher than 100 ng/mL an increase in infections, etc. has been reported. Another way to treat LID is with an iron rich diet and in addition ascorbic acid or Vitamin C, contained in many types of fruits as oranges, kiwifruits, etc. that will increase 2 to 5-fold iron absorption.
Aminoacylase 1 deficiency is a rare inborn error of metabolism. To date only 21 cases have been described.
Symptoms include leaves turning yellow or brown in the margins between the veins which may remain green, while young leaves may appear to be bleached. Fruit would be of poor quality and quantity. Any plant may be affected, but raspberries and pears are particularly susceptible, as well as most acid-loving plants such as azaleas and camellias.
In addition to the characteristic excessive orotic acid in the urine, patients typically have megaloblastic anemia (UMP synthase deficiency) which cannot be cured by administration of vitamin B12 or folic acid.
It also can cause inhibition of RNA and DNA synthesis and failure to thrive.
There is a specific pattern of N-acetyl amino acid excretion in the urine. The diagnosis can be confirmed by sequencing of the aminoacylase 1 gene.
Urocanic aciduria is thought to be relatively benign. Although aggressive behavior and mental retardation have been reported with the disorder, no definitive neurometabolic connection has yet been established.
Urocanic aciduria, also called urocanate hydratase deficiency or urocanase deficiency, is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
Without the enzymatic activity of Malonyl-CoA decarboxylase, cellular Mal-CoA increases so dramatically that at the end it is instead broken down by an unspecific short-chain acyl-CoA hydrolase, which produces malonic acid and CoA. Malonic acid is a Krebs cycle inhibitor, preventing the cells to make ATP through oxidation. In this condition, the cells, to make ATP, are forced to increase glycolysis, which produces lactic acid as a by-product. The increase of lactic and malonic acid drastically lowers blood pH, and causes both lactic and malonic aciduria (acidic urine). This condition is very rare, as fewer than 20 cases have been reported.
By 1999, only seven cases of Malonyl- CoA decarboxylase deficiency had been reported in human in Australia; however, this deficiency predominately occurs during childhood. Patients from the seven reported cases of Malonyl- CoA decarboxylase deficiency have an age range between 4 days to 13 years, and they all have the common symptom of delayed neurological development. Similar study was conducted in Netherland, and found seventeen reported cases of Malonyl- CoA decarboxylase deficiency in children age range from 8 days to 12 years.
Although we have not yet gained a clear understanding of the pathogenic mechanism of this deficiency, some researchers have suggested a brain-specific interaction between Malonyl-CoA and CTP1 enzyme which may leads to unexplained symptoms of the MCD deficiency.
Research has found that large amount of MCD are detached in the hypothalamus and cortex of the brain where high levels of lipogenic enzymes are found, indicating that MCD plays a role in lipid synthesis in the brain. Disturbed interaction between Malonyl-CoA and CPT1 may also contributed to abnormal brain development.
Malonyl-CoA decarboxylase plays an important role in the β-oxidation processes in both mitochondria and peroxisome. Some other authors have also hypothesized that it is the MCD deficiency induced inhibition of peroxisomal β-oxidation that contributes to the development delay.
Scurvy or subclinical scurvy is caused by a deficiency of vitamin C. In modern Western societies, scurvy is rarely present in adults, although infants and elderly people are affected. Virtually all commercially available baby formulas contain added vitamin C, preventing infantile scurvy. Human breast milk contains sufficient vitamin C, if the mother has an adequate intake. Commercial milk is pasteurized, a heating process that destroys the natural vitamin C content of the milk.
Scurvy is one of the accompanying diseases of malnutrition (other such micronutrient deficiencies are beriberi or pellagra) and thus is still widespread in areas of the world depending on external food aid. Although rare, there are also documented cases of scurvy due to poor dietary choices by people living in industrialized nations.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
At present, no specific enzyme deficiency nor genetic mutation has been implicated as the cause of hypertryptophanemia. Several known factors regarding tryptophan metabolism and kynurenines, however, may explain the presence of behavioral abnormalities seen with the disorder.
Tryptophan is an essential amino acid, and is required for protein synthesis. Aside from this crucial role, the remainder of tryptophan is primarily metabolized along the kynurenine pathway in most tissues, including those of the brain and central nervous system.
As the main defect behind hypertryptophanemia is suspected to alter and disrupt the metabolic pathway from tryptophan to kynurenine, a possible correlation between hypertryptophanemia and the known effects of kynurenines on neuronal function, physiology and behavior may be of interest.
One of these kynurenines, aptly named kynurenic acid, serves as a neuroprotectant through its function as an antagonist at both nicotinic and glutamate receptors (responsive to the neurotransmitters nicotine and glutamate, respectively). This action is in opposition to the agonist quinolinic acid, another kynurenine, noted for its potential as a neurotoxin. Quinolinic acid activity has been associated with neurodegenerative disorders such as Huntington's disease, the neuroprective abilities of kynurenic acid forming a counterbalance against this process, and the related excitotoxicity and similar damaging effects on neurons.
Indoleic acid excretion is another indicator of hypertryptophanemia. Indirectly related to kynurenine metabolism, indole modifies neural function and human behavior by interacting with voltage-dependent sodium channels (integral membrane proteins that form ion channels, allowing vital synaptic action potentials).
Hypertryptophanemia is believed to be inherited in an autosomal recessive manner. This means a defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.