Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
DOCK8 deficiency is very rare, estimated to be found in less than one person per million; there have been 32 patients diagnosed as of 2012.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
PNP-deficiency is extremely rare. Only 33 patients with the disorder in the United States have been documented. In the United Kingdom only one child has been diagnosed with this disorder.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
Prevalence varies by population, but is on the order of 1 in 100 to 1 in 1000 people, making it relatively common for a genetic disease.
SigAD occurs in 1 of 39 to 57 patients with celiac disease. This is much higher than the prevalence of selective IgA deficiency in the general population. It is also significantly more common in those with type 1 diabetes.
It is more common in males than in females.
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
Current research suggests that nearly 8% of the population has at least partial DPD deficiency. A diagnostics determination test for DPD deficiency is available and it is expected that with a potential 500,000 people in North America using 5-FU this form of testing will increase. The whole genetic events affecting the DPYD gene and possibly impacting on its function are far from being elucidated, and epigenetic regulations could probably play a major role in DPD deficiency. It seems that the actual incidence of DPD deficiency remains to be understood because it could depend on the very technique used to detect it. Screening for genetic polymorphisms affecting the "DPYD" gene usually identify less than 5% of patients bearing critical mutations, whereas functional studies suggest that up to 20% of patients could actually show various levels of DPD deficiency.
Women could be more at risk than men. It is more common among African-Americans than it is among Caucasians.
The cause of complement deficiency is genetics (though cases of an acquired nature do exist post infection). The majority of complement deficiencies are autosomal recessive, while properdin deficiency could be X-linked inheritance, and finally MBL deficiency can be both.
C2 deficiency has a prevalence of 1 in about 20,000 people in Western countries.
LRBA deficiency is a rare genetic disorder of the immune system. This disorder is caused by a mutation in the gene "LRBA". LRBA stands for “Lipopolysaccharide (LPS)-responsive vesicle trafficking, beach- and anchor-containing” gene. This condition is characterized by autoimmunity, lymphoproliferation, and immune deficiency. It was first described by Gabriela Lopez-Herrera from University College London in 2012. Investigators in the laboratory of Dr. Michael Lenardo at National Institute of Allergy and Infectious Diseases, the National Institutes of Health and Dr. Michael Jordan at Cincinnati Children’s Hospital Medical Center later described this condition and therapy in 2015.
Cause of this deficiency is divided into "primary" and "secondary":
- Primary the International Union of Immunological Societies classifies primary immune deficiencies of the humoral system as follows:
- Secondary secondary (or acquired) forms of humoral immune deficiency are mainly due to hematopoietic malignancies and infections that disrupt the immune system:
Although MPO deficiency classically presents with immune deficiency (especially candida albicans infections), the majority of individuals with MPO deficiency show no signs of immunodeficiency.
The lack of severe symptoms suggest that role of myeloperoxidase in the immune response must be redundant to other mechanisms of intracellular killing of phagocytosed bacteria.
Patients with MPO deficiency have a respiratory burst with a normal nitro blue tetrazolium (NBT) test because they still have NADPH oxidase activity, but do not form bleach due to their lack of myeloperoxidase activity. This is in contrast to chronic granulomatous disease, in which the NBT test is 'negative' due to the lack of NADPH oxidase activity (positive test result means neutrophils turn blue, negative means nitroblue tetrazolium remains yellow).
Patients with MPO deficiency are at increased risk for systemic candidiasis.
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
LRBA deficiency presents as a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. Predominant clinical problems include idiopathic thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), and an autoimmune enteropathy. Before the discovery of these gene mutations, patients were diagnosed with common variable immune deficiency (CVID), which is characterized by low antibody levels and recurrent infections. Infections mostly affect the respiratory tract, as many patients suffer from chronic lung disease, pneumonias, and bronchiectasis. Lymphocytic interstitial lung disease (ILD) is also observed, which complicates breathing and leads to impairment of lung function and mortality. Infections can also occur at other sites, such as the eyes, skin and gastrointestinal tract. Many patients suffer from chronic diarrhea and inflammatory bowel disease. Other clinical features can include hepatosplenomegaly, reoccurring warts, growth retardation, allergic dermatitis, and arthritis. Notably, LRBA deficiency has also been associated with type 1 diabetes mellitus. There is significant clinical phenotypic overlap with disease caused by CTLA4 haploinsufficiency. Since LRBA loss results in a loss of CTLA4 protein, the immune dysregulation syndrome of LRBA deficient patients can be attributed to the secondary loss of CTLA4. Because the predominant features of the disease include autoantibody-mediated disease (AIHA, ITP), Treg defects (resembling those found in CTLA4 haploinsufficient patients), autoimmune infiltration (of non-lymphoid organs, also resembling that found in CTLA4 haploinsufficient patients), and enteropathy, the disease has been termed LATAIE for LRBA deficiency with autoantibodies, Treg defects, autoimmune infiltration, and enteropathy.
Pyruvate kinase deficiency happens worldwide, however northern Europe, and Japan have many cases. The prevalence of pyruvate kinase deficiency is around 51 cases per million in the population (via gene frequency).
In the U.S. this defect occurs in about 1 in 70,000, with the majority of cases presenting in early life.
Furthermore, SCID has an incidence of approximately 1 in 66,000 in California
The disorder is caused by a mutation of the purine nucleoside phosphorylase (PNP) gene, located at chromosome 14q13.1. PNP is a key enzyme in the purine salvage pathway, and is required for purine degradation. Specifically, it catalyzes the conversion of inosine to hypoxanthine and guanosine to guanine (both guanine and hypoxanthine will be made into xanthine which will then become uric acid). A deficiency of it leads to buildup of elevated deoxy-GTP (dGTP) levels resulting in T-cell toxicity and deficiency. In contrast to adenosine deaminase deficiency (another deficiency of purine metabolism), there is minimal disruption to B cells.
PNP deficiency is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome (chromosome 14 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Omenn syndrome is an autosomal recessive severe combined immunodeficiency associated with hypomorphic missense mutations in immunologically relevant genes of T-cells (and B-cells) such as recombination activating genes (RAG1 and RAG2), IL-7 Receptor α gene (IL7Rα), DCLRE1C-Artemis, RMRP-CHH, DNA-Ligase IV, common gamma chain, WHN-FOXN1, ZAP-70 and complete DiGeorge anomaly (DiGeorge Syndrome; CHARGE).
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
Factor XII deficiency (also Hageman factor deficiency) is a deficiency in the production of factor XII (FXII), a plasma glycoprotein and clotting factor that participates in the coagulation cascade and activates factor XI. FXII appears to be not essential for blood clotting, as individuals with this condition are usually asymptomatic and form blood clots in vivo. FXII deficiency tends to be identified during presurgical laboratory screening for bleeding disorders.
The condition can be inherited or acquired.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
Myeloperoxidase deficiency is an autosomal recessive genetic disorder featuring deficiency, either in quantity or of function, of myeloperoxidase, an enzyme found in certain phagocytic immune cells, especially polymorphonuclear leukocytes.
It can appear similar to chronic granulomatous disease on some screening tests.
The condition of platelet storage pool deficiency can be acquired or inherited(genetically passed on from the individuals parents).Some of the causes of platelet storage pool deficiency when acquired are:
Heterozygous protein C deficiency occurs in 0.14–0.50% of the general population. Based on an estimated carrier rate of 0.2%, a homozygous or compound heterozygous protein C deficiency incidence of 1 per 4 million births could be predicted, although far fewer living patients have been identified. This low prevalence of patients with severe genetic protein C deficiency may be explained by excessive fetal demise, early postnatal deaths before diagnosis, heterogeneity in the cause of low concentrations of protein C among healthy individuals and under-reporting.
The incidence of protein C deficiency in individuals who present with clinical symptoms has been reported to be estimated at 1 in 20,000.