Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Very few risk factors for choanal atresia have been identified. While causes are unknown, both genetic and environmental triggers are suspected. One study suggests that chemicals that act as endocrine disrupters may put an unborn infant at risk. A 2012 epidemiological study looked at atrazine, a commonly used herbicide in the U.S., and found that women who lived in counties in Texas with the highest levels of this chemical being used to treat agricultural crops were 80 times more likely to give birth to infants with choanal atresia or stenosis compared to women who lived in the counties with the lowest levels. Another epidemiological report in 2010 found even higher associations between increased incidents of choanal atresia and exposure to second-hand-smoke, coffee consumption, high maternal zinc and B-12 intake and exposure to anti-infective urinary tract medications.
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
The incidence of VACTERL association is estimated to be approximately 1 in 10,000 to 1 in 40,000 live-born infants. It is seen more frequently in infants born to diabetic mothers. While most cases are sporadic, there are clearly families who present with multiple involved members.
The incidence is estimated to range from 0.1–1.2 per 10,000 live births, though the true incidence is unknown. As of 2005, the highest prevalence was found in Canada and estimated at 1 in 8,500 live births.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
This syndrome is due to mutations in the Nance Horan gene (NHS) which is located on the short arm of the X chromosome (Xp22.13).
In the movie City of Angels, Dr. Maggie Rice (played by Meg Ryan) correctly diagnoses the cause of a newborn baby's failure to thrive as due to choanal atresia.
The cause of arrhinia is not known. Akkuzu's study of the literature found that all cases had presented a normal antenatal history.
Ethmocephaly is a type of cephalic disorder caused by holoprosencephaly. Ethmocephaly is the least common facial anomaly. It consists of a proboscis separating narrow-set eyes with an absent nose and microphthalmia (abnormal smallness of one or both eyes). Cebocephaly, another facial anomaly, is characterized by a small, flattened nose with a single nostril situated below incomplete or underdeveloped closely set eyes.
The least severe in the spectrum of facial anomalies is the median cleft lip, also called premaxillary agenesis.
Although the causes of most cases of holoprosencephaly remain unknown, some may be due to dominant or chromosome causes. Such chromosomal anomalies as trisomy 13 and trisomy 18 have been found in association with holoprosencephaly, or other neural tube defects. Genetic counseling and genetic testing, such as amniocentesis, is usually offered during a pregnancy if holoprosencephaly is detected. The recurrence risk depends on the underlying cause. If no cause is identified and the fetal chromosomes are normal, the chance to have another pregnancy affected with holoprosencephaly is about 6%.
There is no treatment for holoprosencephaly and the prognosis for individuals with the disorder is poor. Most of those who survive show no significant developmental gains. For children who survive, treatment is symptomatic. It is possible that improved management of diabetic pregnancies may help prevent holoprosencephaly, however there is no means of primary prevention.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Medical conditions include frequent ear infection, hearing loss, hypotonia, developmental problems, respiratory problems, eating difficulties, light sensitivity, and esophageal reflux.
Data on fertility and the development of secondary sex characteristics is relatively sparse. It has been reported that both male and female patients have had children. Males who have reproduced have all had the autosomal dominant form of the disorder; the fertility of those with the recessive variant is unknown.
Researchers have also reported abnormalities in the renal tract of affected patients. Hydronephrosis is a relatively common condition, and researchers have theorized that this may lead to urinary tract infections. In addition, a number of patients have suffered from cystic dysplasia of the kidney.
A number of other conditions are often associated with Robinow syndrome. About 15% of reported patients suffer from congenital heart defects. Though there is no clear pattern, the most common conditions include pulmonary stenosis and atresia. In addition, though intelligence is generally normal, around 15% of patients show developmental delays.
CHARGE syndrome was formerly referred to as CHARGE association, which indicates a non-random pattern of congenital anomalies that occurs together more frequently than one would expect on the basis of chance. Very few people with CHARGE will have 100% of its known features. In 2004, mutations on the CHD7 gene (located on Chromosome 8) were found in 10 of 17 patients in the Netherlands, making CHARGE an official syndrome. A US study of 110 individuals with CHARGE syndrome showed that 60% of those tested had a mutation of the CHD7 gene.
In 2010, a review of 379 clinically diagnosed cases of CHARGE syndrome, in which CHD7 mutation testing was undertaken found that 67% of cases were due to a CHD7 mutation. CHD7 is a member of the chromodomain helicase DNA-binding (CHD) protein family that plays a role in transcription regulation by chromatin remodeling.
Beare–Stevenson cutis gyrata syndrome is so rare that a reliable incidence cannot be established as of yet; fewer than 20 patients with the condition have been reported.
Arhinia, also called nasal agenesis, is the congenital partial or complete absence of the nose at birth. It is an extremely rare condition, with 47 reported cases in the history of modern medicine. It is generally classified as a craniofacial abnormality.
Cryptophthalmos is a rare congenital anomaly in which the skin is continuous over the eyeball with absence of eyelids. It is classified into three types: complete, incomplete and abortive. Failure of eyelid separation can be associated with maldevelopment of the underlying cornea and microphthalmia. Cryptophthalmos usually occurs on both sides and occurs in association with other multiple malformations collectively referred to as Fraser syndrome.
Several people with distal 18q- have been diagnosed with low IgA levels, resulting in an increased incidence of infections.
Genetic studies have linked the autosomal recessive form of the disorder to the "ROR2" gene on position 9 of the long arm of chromosome 9. The gene is responsible for aspects of bone and cartilage growth. This same gene is involved in causing autosomal dominant brachydactyly B.
The autosomal dominant form has been linked to three genes - WNT5A, Segment polarity protein dishevelled homolog DVL-1 (DVL1) and Segment polarity protein dishevelled homolog DVL-3 (DVL3). This form is often caused by new mutations and is generally less severe then the recessive form. Two further genes have been linked to this disorder - Frizzled-2 (FZD2) and Nucleoredoxin (NXN gene). All of these genes belong to the same metabolic pathway - the WNT system. This system is involved in secretion for various compounds both in the fetus and in the adult.
A fetal ultrasound can offer prenatal diagnosis 19 weeks into pregnancy. However, the characteristics of a fetus suffering from the milder dominant form may not always be easy to differentiate from a more serious recessive case. Genetic counseling is an option given the availability of a family history.
Hypothyroidism has been reported in some people with distal 18q-.
Several mutations in the FGFR2 gene (a gene coding for a protein called fibroblast growth factor receptor 2, which is involved in important signaling pathways) are known to cause Beare–Stevenson cutis gyrata syndrome; however, not all patients with the condition have a mutation in their FGFR2 gene. Any alternative underlying causes are currently unidentified. The syndrome follows an autosomal dominant pattern, meaning that if one of the two available genes carries a mutation the syndrome will result. Currently, no familial histories are known (in other words, there are no reports of cases in which a parent carrying a mutation in their FGFR2 gene then propagated said mutation to his or her child).
Lenz microphthalmia syndrome (or LMS) is a very rare inherited disorder characterized by abnormal smallness of one or both eyes (microphthalmos) sometimes with droopy eyelids (blepharoptosis), resulting in visual impairment or blindness. Eye problems may include coloboma, microcornea, and glaucoma. Some affected infants may have complete absence of the eyes (anophthalmia). Most affected infants have developmental delay and intellectual disability, ranging from mild to severe. Other physical abnormalities associated with this disorder can include an unusually small head (microcephaly), and malformations of the teeth, ears, fingers or toes, skeleton, and genitourinary system. The range and severity of findings vary from case to case. Formal diagnosis criteria do not exist.
Lenz microphthalmia syndrome is inherited as an X-linked recessive genetic trait and is fully expressed in males only. Females who carry one copy of the disease gene (heterozygotes) may exhibit some of the symptoms associated with the disorder, such as an abnormally small head (microcephaly), short stature, or malformations of the fingers or toes. Molecular genetic testing of BCOR (MCOPS2 locus), the only gene known to be associated with Lenz microphthalmia syndrome, is available on a clinical basis. One additional locus on the X chromosome (MCOPS1) is known to be associated with LMS.
Lenz microphthalmia syndrome is also known as LMS, Lenz syndrome, Lenz dysplasia, Lenz dysmorphogenetic syndrome, or microphthalmia with multiple associated anomalies (MAA: OMIM 309800). It is named after Widukind Lenz, a German geneticist and dysmorphologist.
A somewhat similar X-linked syndrome of microphthalmia, called oculofaciocardiodental syndrome (OFCD) is associated with mutations in BCOR. OFCD syndrome is inherited in an X-linked dominant pattern with male lethality.
Oculocerebrocutaneous syndrome (also known as Delleman–Oorthuys syndrome) is a condition characterized by orbital cysts, microphthalmia, porencephaly, agenesis of the corpus callosum, and facial skin tags.
Smith Martin Dodd syndrome is a very rare genetic disorder first described by Smith et al. in 1994. It is characterized by small eyes, a diaphragmatic hernia, and Tetralogy of Fallot, a congenital heart defect. The only known case is of a 9-year-old boy with several congenital anomalies including a diaphragmatic hernia, microphthalmia, and Tetralogy of Fallot. It was found that the boy had a reciprocal translocation t(1;15)(q41;q21.2). A congenital diaphragmatic hernia is consistent with chromosome 1q41-q42 deletion syndrome, and the report by Smith et al. suggested that genes involved in the translocation may be important for the development of morphological characteristics, especially those of the eye or heart.