Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prior to modern cardiovascular surgical techniques and drugs such as losartan, and metoprolol, the prognosis of those with Marfan syndrome was not good: a range of untreatable cardiovascular issues was common. Lifespan was reduced by at least a third, and many died in their teens and twenties due to cardiovascular problems. Today, cardiovascular symptoms of Marfan syndrome are still the most significant issues in diagnosis and management of the disease, but adequate prophylactic monitoring and prophylactic therapy offers something approaching a normal lifespan, and more manifestations of the disease are being discovered as more patients live longer. Women with Marfan syndrome live longer than men.
During pregnancy, even in the absence of preconception cardiovascular abnormality, women with Marfan syndrome are at significant risk of aortic dissection, which is often fatal even when rapidly treated. Women with Marfan syndrome, then, should receive a thorough assessment prior to conception, and echocardiography should be performed every six to 10 weeks during pregnancy, to assess the aortic root diameter. For most women, safe vaginal delivery is possible.
Marfan syndrome is expressed dominantly. This means a child with one parent a bearer of the gene has a 50% probability of getting the syndrome. In 1996, the first preimplantation genetic testing (PGT) therapy for Marfan was conducted; in essence PGT means conducting a genetic test on early-stage IVF embryo cells and discarding those embryos affected by the Marfan mutation.
Several genetic causes of Loeys–Dietz syndrome have been identified. A "de novo" mutation in TGFB3, a ligand of the TGF ß pathway, was identified in an individual with a syndrome presenting partially overlapping symptoms with Marfan Syndrome and Loeys-Dietz Syndrome.
Loeys–Dietz syndrome (LDS) is an autosomal dominant genetic connective tissue disorder. It has features similar to Marfan syndrome and Ehlers–Danlos syndrome. The disorder is marked by aneurysms in the aorta, often in children, and the aorta may also undergo sudden dissection in the weakened layers of the wall of aorta. Aneurysms and dissections also can occur in arteries other than the aorta. Because aneurysms in children tend to rupture early, children are at greater risk for dying if the syndrome is not identified. Surgery to repair aortic aneurysms is essential for treatment.
There are four types of the syndrome, labelled types I through IV, which are distinguished by their genetic cause. Type 1, Type 2, Type 3, and Type 4 are caused by mutations in "TGFBR1", "TGFBR2", "SMAD3", and "TGFB2" respectively. These four genes encoding transforming growth factors play a role in cell signaling that promotes growth and development of the body's tissues. Mutations of these genes cause production of proteins without function. Although the disorder has an autosomal pattern of inheritance, this disorder results from a new gene mutation in 75% of cases and occurs in people with no history of the disorder in their family.
Loeys-Dietz syndrome was identified and characterized by pediatric geneticists Bart Loeys and Harry Dietz at Johns Hopkins University in 2005.
MASS syndrome a medical disorder similar to Marfan syndrome.
MASS stands for: mitral valve prolapse, aortic root diameter at upper limits of normal for body size, stretch marks of the skin, and skeletal conditions similar to Marfan syndrome. MASS Phenotype is a connective tissue disorder that is similar to Marfan syndrome. It is caused by a similar mutation in the gene called fibrillin-1 that tells the body how to make an important protein found in connective tissue. This mutation is an autosomal dominant mutation in the FBN1 gene that codes for the extracellular matrix protein fibrillin-1; defects in the fibrillin-1 protein cause malfunctioning microfibrils that result in improper stretching of ligaments, blood vessels, and skin.
Someone with MASS phenotype has a 50 percent chance of passing the gene along to each child.
People with features of MASS Phenotype need to see a doctor who knows about connective tissue disorders for an accurate diagnosis; often this will be a medical geneticist. It is very important that people with MASS Phenotype get an early and correct diagnosis so they can get the right treatment. Treatment options for MASS phenotype are largely determined on a case-by-case basis and generally address the symptoms as opposed to the actual disorder; furthermore, due to the similarities between these two disorders, individuals with MASS phenotype follow the same treatment plans as those with Marfan syndrome.
MASS stands for the Mitral valve, myopia, Aorta, Skin and Skeletal features of the disorder. MASS Phenotype affects different people in different ways.
In MASS Phenotype:
Mitral valve prolapse may be present. This is when the flaps of one of the heart’s valves (the mitral valve, which regulates blood flow on the left side of the heart) are “floppy” and don’t close tightly. Aortic root diameter may be at the upper limits of normal for body size, but unlike Marfan syndrome there is not progression to aneurysm or predisposition to dissection. Skin may show stretch marks unrelated to weight gain or loss (striae). Skeletal features, including curvature of the spine (scoliosis), chest wall deformities, and joint hypermobility, may be present. People with MASS Phenotype do not have lens dislocation but have myopia, also known as nearsightedness.
MASS syndrome and Marfan syndrome are overlapping connective tissue disorders. Both can be caused by mutations in the gene encoding a protein called fibrillin. These conditions share many of the same signs and symptoms including long limbs and fingers, chest wall abnormalities (indented chest bone or protruding chest bone), flat feet, scoliosis, mitral valve prolapse, loose or hypextensible joints, highly arched roof of the mouth, and mild dilatation of the aortic root.
Individuals with MASS syndrome do not have progressive aortic enlargement or lens dislocation, while people with Marfan syndrome do. Skin involvement in MASS syndrome is typically limited to stretch marks (striae distensae). Also, the skeletal symptoms of MASS syndrome are generally mild.
Heart-hand syndrome type 3 is very rare and has been described only in three members of a Spanish family. It is also known as Heart-hand syndrome, Spanish type.
Heart-hand syndrome type 2 is also known as Berk–Tabatznik syndrome. Berk–Tabatznik syndrome is a condition with an unknown cause that shows symptoms of short stature, congenital optic atrophy and brachytelephalangy. This condition is extremely rare with only two cases being found.
The exact role that these risk factors play in the process leading to rupture is unclear. Aortic root dilatation is thought to be due to a mesenchymal defect as pathological evidence of cystic medial necrosis has been found by several studies. The association between a similar defect and aortic dilatation is well established in such conditions such as Marfan syndrome. Also, abnormalities in other mesenchymal tissues (bone matrix and lymphatic vessels) suggests a similar primary mesenchymal defect in patients with Turner syndrome. However, no evidence suggests that patients with Turner syndrome have a significantly higher risk of aortic dilatation and dissection in absence of predisposing factors. So, the risk of aortic dissection in Turner syndrome appears to be a consequence of structural cardiovascular malformations and hemodynamic risk factors rather than a reflection of an inherent abnormality in connective tissue. The natural history of aortic root dilatation is unknown, but because of its lethal potential, this aortic abnormality needs to be carefully followed.
Cardiovascular malformations (typically bicuspid aortic valve, coarctation of the aorta, and some other left-sided cardiac malformations) and hypertension predispose to aortic dilatation and dissection in the general population. Indeed, these same risk factors are found in more than 90% of patients with Turner syndrome who develop aortic dilatation. Only a small number of patients (around 10%) have no apparent predisposing risk factors. The risk of hypertension is increased three-fold in patients with Turner syndrome. Because of its relation to aortic dissection, blood pressure must be regularly monitored and hypertension should be treated aggressively with an aim to keep blood pressure below 140/80 mmHg. As with the other cardiovascular malformations, complications of aortic dilatation is commonly associated with 45,X karyotype.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Both autosomal dominant and recessive forms of Larsen syndrome have been reported. The former is significantly more common than the latter. Symptoms such as syndactyly, cleft palate, short stature, and cardiac defects are seen more commonly in individuals with the autosomal recessive form of the disorder. A lethal form of the disorder has been reported it is described as being a combination of the Larsen phenotype and pulmonary hypoplasia.
While Larsen syndrome can be lethal if untreated, the prognosis is relatively good if individuals are treated with orthopedic surgery, physical therapy, and other procedures used to treat the symptoms linked with Larsen syndrome.
There has been a great deal of research to understand the cause of PHACE Syndrome. The abnormalities associated with this syndrome are thought to be due to errors that occur very early during development. Unfortunately, why the errors occur, or the exact cause is still unknown. PHACE has a shared biology of other vascular anomalies. There may be a genetic component involved and studies are underway to investigate this idea. No familial cases have been identified to date. Research is ongoing to find the cause of all vascular anomalies including PHACE Syndrome.
AOS is a rare genetic disorder and the annual incidence or overall prevalence of AOS is unknown. Approximately 100 individuals with this disorder have been reported in the medical literature.
PHACE Syndrome is the uncommon association between large infantile hemangiomas, usually of the face, and birth defects of the brain, heart, eyes, skin and/or arteries. It is an acronym that stands for the medical names of the parts of the body it often impacts:
- Posterior fossa abnormalities and other structural brain abnormalities
- Hemangioma(s) of the cervical facial region
- Arterial cerebrovascular anomalies
- Cardiac defects, aortic coarctation and other aortic abnormalities
- Eye anomalies
Sometimes an "S" is added to PHACE making the acronym PHACES; with the "S" standing for "Sternal defects" and/or "Supraumbilical raphe."
In 1993, an association between large facial hemangiomas and brain defects among 9 subjects was reported. 3 years later, a larger case study was published showing a wider spectrum of grouped malformations. The association of anomalies and the PHACES acronym was first coined by Dr. Vail Reese and Dr. Ilona Frieden in 1996, making it a newly described syndrome. A diagnosis is generally made from the physical examination, along with imaging of the head and chest, and an eye examination. PHACE is most commonly diagnosed among female infants. Long-term quality of life varies.
Hemangioma growth phase can last anywhere from 6 to 18 months. Then involution, or healing, of the hemangioma begins. Laser and other surgeries usually are able to make a substantial positive impact on appearance. Long after the hemangioma recedes, any damage it or the other defects caused, may remain. Migraines are common, as are developmental delays.
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
Myhre syndrome is a rare genetic disorder inherited in an autosomal dominant fashion. It is caused by mutation in SMAD4 gene.
A degenerative breakdown of collagen, elastin, and smooth muscle caused by aging contributes to weakening of the wall of the artery.
In the aorta, this can result in the formation of a fusiform aneurysm. There is also increased risk of aortic dissection.
An individual exhibiting intellectual disability and other symptoms similar to LFS was found to have a terminal deletion of the subtelomeric region in the short arm of chromosome 5. Deletion of this area of chromosome 5 is associated with intellectual disability, psychotic behavior, autism, macrocephaly and hypernasal-like speech, as well as the disorder Cri du chat syndrome. Fryns (2006) suggests a detailed examination of chromosome 5 with FISH should be performed as part of the differential diagnosis of LFS.
Mutations in the "UPF3B" gene, also found on the X chromosome, are another cause of X-linked intellectual disability. "UPF3B" is part of the nonsense-mediated mRNA decay (NMD) complex, which performs mRNA surveillance, detecting mRNA sequences that have been erroneously truncated (shortened) by the presence of nonsense mutations. Mutations in "UPF3B" alter and prevent normal function of the NMD pathway, resulting in translation and expression of truncated mRNA sequences into malfunctioning proteins that can be associated with developmental errors and intellectual disability. Individuals from two families diagnosed with LFS and one family with FGS were found to have mutations in "UPF3B", confirming that the clinical presentations of the different mutations can overlap.
Crouzon syndrome is an autosomal dominant genetic disorder known as a branchial arch syndrome. Specifically, this syndrome affects the first branchial (or pharyngeal) arch, which is the precursor of the maxilla and mandible. Since the branchial arches are important developmental features in a growing embryo, disturbances in their development create lasting and widespread effects.
This syndrome is named after Octave Crouzon, a French physician who first described this disorder. He noted the affected patients were a mother and her daughter, implying a genetic basis. First called "craniofacial dysostosis", the disorder was characterized by a number of clinical features. This syndrome is caused by a mutation in the fibroblast growth factor receptor II, located on chromosome 10.
Breaking down the name, "craniofacial" refers to the skull and face, and "dysostosis" refers to malformation of bone.
Now known as Crouzon syndrome, the characteristics can be described by the rudimentary meanings of its former name. What occurs is that an infant's skull and facial bones, while in development, fuse early or are unable to expand. Thus, normal bone growth cannot occur. Fusion of different sutures leads to different patterns of growth of the skull.
Examples include: trigonocephaly (fusion of the metopic suture), brachycephaly (fusion of the coronal suture), dolichocephaly (fusion of the sagittal suture), plagiocephaly (unilateral premature closure of lambdoid and coronal sutures), oxycephaly (fusion of coronal and lambdoidal sutures), Kleeblattschaedel (premature closure of all sutures).
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
This disorder was first reported in 1981.
It has many similarities to LAPS Syndrome and they both arise from the same mutations in the SMAD4 gene. It is believed that they are the same syndrome.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Familial thoracic aortic aneurysm is an autosomal dominant disorder of large arteries.
There is an association between familial thoracic aortic aneurysm, Marfan syndrome and massive baclofen overdose as well as other hereditary connective tissue disorders.