Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prior to modern cardiovascular surgical techniques and drugs such as losartan, and metoprolol, the prognosis of those with Marfan syndrome was not good: a range of untreatable cardiovascular issues was common. Lifespan was reduced by at least a third, and many died in their teens and twenties due to cardiovascular problems. Today, cardiovascular symptoms of Marfan syndrome are still the most significant issues in diagnosis and management of the disease, but adequate prophylactic monitoring and prophylactic therapy offers something approaching a normal lifespan, and more manifestations of the disease are being discovered as more patients live longer. Women with Marfan syndrome live longer than men.
During pregnancy, even in the absence of preconception cardiovascular abnormality, women with Marfan syndrome are at significant risk of aortic dissection, which is often fatal even when rapidly treated. Women with Marfan syndrome, then, should receive a thorough assessment prior to conception, and echocardiography should be performed every six to 10 weeks during pregnancy, to assess the aortic root diameter. For most women, safe vaginal delivery is possible.
Marfan syndrome is expressed dominantly. This means a child with one parent a bearer of the gene has a 50% probability of getting the syndrome. In 1996, the first preimplantation genetic testing (PGT) therapy for Marfan was conducted; in essence PGT means conducting a genetic test on early-stage IVF embryo cells and discarding those embryos affected by the Marfan mutation.
Several genetic causes of Loeys–Dietz syndrome have been identified. A "de novo" mutation in TGFB3, a ligand of the TGF ß pathway, was identified in an individual with a syndrome presenting partially overlapping symptoms with Marfan Syndrome and Loeys-Dietz Syndrome.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
MASS syndrome a medical disorder similar to Marfan syndrome.
MASS stands for: mitral valve prolapse, aortic root diameter at upper limits of normal for body size, stretch marks of the skin, and skeletal conditions similar to Marfan syndrome. MASS Phenotype is a connective tissue disorder that is similar to Marfan syndrome. It is caused by a similar mutation in the gene called fibrillin-1 that tells the body how to make an important protein found in connective tissue. This mutation is an autosomal dominant mutation in the FBN1 gene that codes for the extracellular matrix protein fibrillin-1; defects in the fibrillin-1 protein cause malfunctioning microfibrils that result in improper stretching of ligaments, blood vessels, and skin.
Someone with MASS phenotype has a 50 percent chance of passing the gene along to each child.
People with features of MASS Phenotype need to see a doctor who knows about connective tissue disorders for an accurate diagnosis; often this will be a medical geneticist. It is very important that people with MASS Phenotype get an early and correct diagnosis so they can get the right treatment. Treatment options for MASS phenotype are largely determined on a case-by-case basis and generally address the symptoms as opposed to the actual disorder; furthermore, due to the similarities between these two disorders, individuals with MASS phenotype follow the same treatment plans as those with Marfan syndrome.
MASS stands for the Mitral valve, myopia, Aorta, Skin and Skeletal features of the disorder. MASS Phenotype affects different people in different ways.
In MASS Phenotype:
Mitral valve prolapse may be present. This is when the flaps of one of the heart’s valves (the mitral valve, which regulates blood flow on the left side of the heart) are “floppy” and don’t close tightly. Aortic root diameter may be at the upper limits of normal for body size, but unlike Marfan syndrome there is not progression to aneurysm or predisposition to dissection. Skin may show stretch marks unrelated to weight gain or loss (striae). Skeletal features, including curvature of the spine (scoliosis), chest wall deformities, and joint hypermobility, may be present. People with MASS Phenotype do not have lens dislocation but have myopia, also known as nearsightedness.
MASS syndrome and Marfan syndrome are overlapping connective tissue disorders. Both can be caused by mutations in the gene encoding a protein called fibrillin. These conditions share many of the same signs and symptoms including long limbs and fingers, chest wall abnormalities (indented chest bone or protruding chest bone), flat feet, scoliosis, mitral valve prolapse, loose or hypextensible joints, highly arched roof of the mouth, and mild dilatation of the aortic root.
Individuals with MASS syndrome do not have progressive aortic enlargement or lens dislocation, while people with Marfan syndrome do. Skin involvement in MASS syndrome is typically limited to stretch marks (striae distensae). Also, the skeletal symptoms of MASS syndrome are generally mild.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
While Larsen syndrome can be lethal if untreated, the prognosis is relatively good if individuals are treated with orthopedic surgery, physical therapy, and other procedures used to treat the symptoms linked with Larsen syndrome.
There has been a great deal of research to understand the cause of PHACE Syndrome. The abnormalities associated with this syndrome are thought to be due to errors that occur very early during development. Unfortunately, why the errors occur, or the exact cause is still unknown. PHACE has a shared biology of other vascular anomalies. There may be a genetic component involved and studies are underway to investigate this idea. No familial cases have been identified to date. Research is ongoing to find the cause of all vascular anomalies including PHACE Syndrome.
Both autosomal dominant and recessive forms of Larsen syndrome have been reported. The former is significantly more common than the latter. Symptoms such as syndactyly, cleft palate, short stature, and cardiac defects are seen more commonly in individuals with the autosomal recessive form of the disorder. A lethal form of the disorder has been reported it is described as being a combination of the Larsen phenotype and pulmonary hypoplasia.
PHACE Syndrome is the uncommon association between large infantile hemangiomas, usually of the face, and birth defects of the brain, heart, eyes, skin and/or arteries. It is an acronym that stands for the medical names of the parts of the body it often impacts:
- Posterior fossa abnormalities and other structural brain abnormalities
- Hemangioma(s) of the cervical facial region
- Arterial cerebrovascular anomalies
- Cardiac defects, aortic coarctation and other aortic abnormalities
- Eye anomalies
Sometimes an "S" is added to PHACE making the acronym PHACES; with the "S" standing for "Sternal defects" and/or "Supraumbilical raphe."
In 1993, an association between large facial hemangiomas and brain defects among 9 subjects was reported. 3 years later, a larger case study was published showing a wider spectrum of grouped malformations. The association of anomalies and the PHACES acronym was first coined by Dr. Vail Reese and Dr. Ilona Frieden in 1996, making it a newly described syndrome. A diagnosis is generally made from the physical examination, along with imaging of the head and chest, and an eye examination. PHACE is most commonly diagnosed among female infants. Long-term quality of life varies.
Hemangioma growth phase can last anywhere from 6 to 18 months. Then involution, or healing, of the hemangioma begins. Laser and other surgeries usually are able to make a substantial positive impact on appearance. Long after the hemangioma recedes, any damage it or the other defects caused, may remain. Migraines are common, as are developmental delays.
An individual exhibiting intellectual disability and other symptoms similar to LFS was found to have a terminal deletion of the subtelomeric region in the short arm of chromosome 5. Deletion of this area of chromosome 5 is associated with intellectual disability, psychotic behavior, autism, macrocephaly and hypernasal-like speech, as well as the disorder Cri du chat syndrome. Fryns (2006) suggests a detailed examination of chromosome 5 with FISH should be performed as part of the differential diagnosis of LFS.
Mutations in the "UPF3B" gene, also found on the X chromosome, are another cause of X-linked intellectual disability. "UPF3B" is part of the nonsense-mediated mRNA decay (NMD) complex, which performs mRNA surveillance, detecting mRNA sequences that have been erroneously truncated (shortened) by the presence of nonsense mutations. Mutations in "UPF3B" alter and prevent normal function of the NMD pathway, resulting in translation and expression of truncated mRNA sequences into malfunctioning proteins that can be associated with developmental errors and intellectual disability. Individuals from two families diagnosed with LFS and one family with FGS were found to have mutations in "UPF3B", confirming that the clinical presentations of the different mutations can overlap.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
DOCK8 deficiency is very rare, estimated to be found in less than one person per million; there have been 32 patients diagnosed as of 2012.
There are few studies of the long-term outcomes of patients treated for MALS. According to Duncan, the largest and more relevant late outcomes data come from a study of 51 patients who underwent open surgical treatment for MALS, 44 of whom were available for long-term follow-up at an average of nine years following therapy. The investigators reported that among patients who underwent celiac artery decompression and revascularization, 75% remained asymptomatic at follow-up. In this study, predictors of favorable outcome included:
- Age from 40 to 60 years
- Lack of psychiatric condition or alcohol use
- Abdominal pain that was worse after meals
- Weight loss greater than 20 lb (9.1 kg)
Heyde's syndrome is a syndrome of gastrointestinal bleeding from angiodysplasia in the presence of aortic stenosis.
It is named after Edward C. Heyde, MD who first noted the association in 1958. It is caused by the induction of Von Willebrand disease type IIA (vWD-2A) by a depletion of Von Willebrand factor (vWF) in blood flowing through the narrowed valvular stenosis.
The exact prevalence of the syndrome is unknown, because both aortic stenosis and angiodysplasia are common diseases in the elderly. A retrospective chart review of 3.8 million people in Northern Ireland found that the incidence of gastrointestinal bleeding in people with any diagnosis of aortic stenosis (they did not subgroup people by severity) was just 0.9%. They also found that the reverse correlation—the incidence of aortic stenosis in people with gastrointestinal bleeding—was 1.5%. However, in 2003 a study of 50 people with aortic stenosis severe enough to warrant immediate valve replacement found GI bleeding in 21% of people, and another study done in the USA looking at angiodysplasia rather than GI bleeding found that the prevalence of aortic stenosis was 31% compared to 14% in the control group.
A degenerative breakdown of collagen, elastin, and smooth muscle caused by aging contributes to weakening of the wall of the artery.
In the aorta, this can result in the formation of a fusiform aneurysm. There is also increased risk of aortic dissection.
The most common causes in young children are birth trauma and a type of cancer called neuroblastoma. The cause of about a third of cases in children is unknown.
Familial thoracic aortic aneurysm is an autosomal dominant disorder of large arteries.
There is an association between familial thoracic aortic aneurysm, Marfan syndrome and massive baclofen overdose as well as other hereditary connective tissue disorders.
Little is known regarding the exact causes of aortic arch anomalies. However, the association with chromosome 22q11 deletion (CATCH 22) implies that a genetic component is likely in certain cases. Esophageal atresia also occurs in some patients with double aortic arch.
Inheritance is thought to be rather complex. There is a good amount of evidence that shows the disease is autosomal dominant, with some penetrance. There is also the possibility of age related dependence. It is known that Marfan’s Syndrome and Ehler-Danlos Syndrome lead to an increased risk for development of FAD. Marfan’s Syndrome is not required to have an aortic dissection. One study suggests that the chromosomal locus for the gene is 5q13-14. The same study found that other genes may be linked, and include loci for Marfan and Ehler-Danlos Syndromes, genes for metalloproteinase 3 and 9, and tissue inhibitor of malloproteinase 2 as well as two loci on chromosomes 5q13-14 and lq23.2-24. Still other studies show that mutations in smooth muscle cell-specific isoforms of alpha actin and beta myosin heavy chain may cause FAD. Mutations in the genes TGFBR 1 and 2 are known to cause dissections in aortas with normal diameter size (>4.3 cm) and gene "FPN1" mutations typically affect aortas with larger diameters (<4.4 cm).
There are several hypotheses which attempt to explain how the dissection physically occurs. The first states that a tear develops in the intima layer of the aorta which allows blood to flow from the lumen of the aorta into the intima. This event creates a dissection and essentially two lumens. The second hypothesis suggests that the vasa vasorum ruptures and causes a hemorrhage in the wall of the aorta. The hemorrhaging promotes tearing of the intima and eventually aortic dissection.
The major risk factors for FAD include high blood pressure, old age, haematoma, genetic weakening of aortic wall, cocaine use, pregnancy and diseases causing abnormal connective tissue. One study found that the average age(s) for the occurrence of dissection caused by degenerative aneurysm is 65 years and up. Dissections thought to be the result of genetic mutations appear to be more likely to occur between the ages of 40 and 60. Another study found that 20% of patients with FAD have a close relative with a history of thoracic aortic aneurysm or dissection which suggests yet another major risk factor.
Currently, there is controversy over whether or not inheritance truly plays a role in FAD, and if so which gene it acts upon. FAD does not come from strictly one predisposing factor, such as hypertension. It is suggested that the combination of environmental factors along with genetics may contribute to causing FAD. Before newer and more effective cures and therapies can be developed, first the specific gene mutation must be identified. Until such a gene is determined, scientists say patient education, and physician awareness is vital. Currently scientists have found animal models to be beneficial in understanding the pathology behind FAD. In the future there is hope to develop drugs that will better support and strengthen the aortic wall. Endovascular methods of treatment are becoming increasingly popular, and scientists hope to use this technique in both acute and chronic cases.
In medicine, the median arcuate ligament syndrome (MALS, also known as celiac artery compression syndrome, celiac axis syndrome, celiac trunk compression syndrome or Dunbar syndrome) is a condition characterized by abdominal pain attributed to compression of the celiac artery and possibly the celiac ganglia by the median arcuate ligament. The abdominal pain may be related to meals, may be accompanied by weight loss, and may be associated with an abdominal bruit heard by a clinician.
The diagnosis of MALS is one of exclusion, as many healthy patients demonstrate some degree of celiac artery compression in the absence of symptoms. Consequently, a diagnosis of MALS is typically only entertained after more common conditions have been ruled out. Once suspected, screening for MALS can be done with ultrasonography and confirmed with computed tomography (CT) or magnetic resonance (MR) angiography.
Treatment is generally surgical, the mainstay being open division, or separation, of the median arcuate ligament combined with removal of the celiac ganglia. The majority of patients benefit from surgical intervention. Poorer responses to treatment tend to occur in patients of older age, those with a psychiatric condition or who use alcohol, have abdominal pain unrelated to meals, or who have not experienced weight loss.
Bicuspid aortic valves are the most common cardiac valvular anomaly, occurring in 1–2% of the general population. It is twice as common in males as in females.
Bicuspid aortic valve is a heritable condition, with a demonstrated association with mutations in the NOTCH1 gene. Its heritability (formula_1) is as high as 89%. Both familial clustering and isolated valve defects have been documented. The incidence of bicuspid aortic valve can be as high as 10% in families affected with the valve problem..Recent studies suggest that BAV is an autosomal dominant condition with incomplete penetrance. Other congenital heart defects are associated with bicuspid aortic valve at various frequencies, including coarctation of the aorta.
Spontaneous cases are considered to be caused by intrinsic factors that weaken the arterial wall. Only a very small proportion (1–4%) have a clear underlying connective tissue disorder, such as Ehlers–Danlos syndrome type 4 and more rarely Marfan's syndrome. Ehlers-Danlos syndrome type 4, caused by mutations of the "COL3A" gene, leads to defective production of the collagen, type III, alpha 1 protein and causes skin fragility as well as weakness of the walls of arteries and internal organs. Marfan's syndrome results from mutations in the "FBN1" gene, defective production of the protein fibrillin-1, and a number of physical abnormalities including aneurysm of the aortic root.
There have also been reports in other genetic conditions, such as osteogenesis imperfecta type 1, autosomal dominant polycystic kidney disease and pseudoxanthoma elasticum, α antitrypsin deficiency and hereditary hemochromatosis, but evidence for these associations is weaker. Genetic studies in other connective tissue-related genes have mostly yielded negative results. Other abnormalities to the blood vessels, such as fibromuscular dysplasia, have been reported in a proportion of cases. Atherosclerosis does not appear to increase the risk.
There have been numerous reports of associated risk factors for vertebral artery dissection; many of these reports suffer from methodological weaknesses, such as selection bias. Elevated homocysteine levels, often due to mutations in the "MTHFR" gene, appear to increase the risk of vertebral artery dissection. People with an aneurysm of the aortic root and people with a history of migraine may be predisposed to vertebral artery dissection.