Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antineoplastic resistance, synonymous with chemotherapy resistance, is the ability of cancer cells to survive and grow despite different anti-cancer therapies, i.e. their multiple drug resistance. There are two general causes of antineoplastic therapy failure:
Inherent resistance, such as genetic characteristics, giving cancer cells their resistance from the beginning, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the multiple drug resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies.
There are two general causes of antineoplastic therapy failure: Inherent genetic characteristics, giving cancer cells their resistance, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure. Altered membrane transport, enhanced DNA repair, apoptotic pathway defects, alteration of target molecules, protein and pathway mechanisms, such as enzymatic deactivation.
Since cancer is a genetic disease, two genomic events underlie acquired drug resistance: Genome alterations (e.g. gene amplification and deletion) and epigenetic modifications.
Cancer cells are constantly using a variety of tools, involving genes, proteins and altered pathways, to ensure their survival against antineoplastic drugs.
The 1997 International Germ Cell Consensus Classification is a tool for estimating the risk of relapse after treatment of malignant germ cell tumor.
A small study of ovarian tumors in girls reports a correlation between cystic and benign tumors and, conversely, solid and malignant tumors. Because the cystic extent of a tumor can be estimated by ultrasound, MRI, or CT scan before surgery, this permits selection of the most appropriate surgical plan to minimize risk of spillage of a malignant tumor.
Access to appropriate treatment has a large effect on outcome. A 1993 study of outcomes in Scotland found that for 454 men with non-seminomatous (non-germinomatous) germ cell tumors diagnosed between 1975 and 1989, 5-year survival increased over time and with earlier diagnosis. Adjusting for these and other factors, survival was 60% higher for men treated in a cancer unit that treated the majority of these men, even though the unit treated more men with the worst prognosis.
Choriocarcinoma of the testicles has the worst prognosis of all germ cell cancers
Some investigators suggest that this distribution arises as a consequence of abnormal migration of germ cells during embryogenesis. Others hypothesize a widespread distribution of germ cells to multiple sites during normal embryogenesis, with these cells conveying genetic information or providing regulatory functions at somatic sites.
Extragonadal germ cell tumors were thought initially to be isolated metastases from an undetected primary tumor in a gonad, but it is now known that many germ cell tumors are congenital and originate outside the gonads. The most notable of these is sacrococcygeal teratoma, the single most common tumor diagnosed in babies at birth.
Of all anterior mediastinal tumors, 15–20% are germ cell tumors of which approximately 50% are benign teratomas.
A review from 2000 stated that life expectancy was reduced because of a tendency to develop cancer relatively early as well as deaths due to infections related to immunodeficiency.
Hospitals are primary transmission sites for CRE-based infections. Up to 75% of hospital admissions attributed to CRE were from long-term care facilities or transferred from another hospital. Suboptimal maintenance practices are the largest cause of CRE transmission. This includes the failure to adequately clean and disinfect medication cabinets, other surfaces in patient rooms, and portable medical equipment, such as X-ray and ultrasound machines that are used for both CRE and non-CRE patients.
Thus far, CRE have primarily been nosocomial infectious agents. Almost all CRE infections occur in people receiving significant medical care in hospitals, long-term acute care facilities, or nursing homes. Independent risk factors for CRE infection include use of beta-lactam antibiotics and the use of mechanical ventilation. Patients with diabetes have also been shown to be at an elevated risk for acquiring CRE infections. When compared to other hospitalized patients, those admitted from long-term acute care (LTAC) facilities have significantly higher incidence of colonization and infection rates. Another 2012 multicenter study found that over 30% of patients with recent exposure to LTAC were colonized or infected with CRE. A person susceptible to CRE transmission is more likely to be female, have a greater number of parenteral nutrition-days (meaning days by which the person received nutrition via the bloodstream), and to have had a significant number of days breathing through a ventilator.
Infections with carbapenem-resistant "Klebsiella pneumoniae" were associated with organ/stem cell transplantation, mechanical ventilation, exposure to antimicrobials, and overall longer length of stay in hospitals.
People most likely to acquire carbapenem-resistant bacteria are those already receiving medical attention. In a study carried out at Sheba medical center, there was a trend toward worse Charleson Comorbidity scores in patients who acquired CRKP during ICU stay. Those at highest risk are patients receiving an organ or stem cell implantation, use of mechanical ventilation, or have to have an extended stay in the hospital along with exposure to antimicrobials. In a study performed in Singapore, the acquisition of ertapenem-resistant Enterobacteriaceae to the acquisition of CRE. Exposure to antibiotics, especially fluoroquinolones, and previous hospitalization dramatically increased the risk of acquisition carbapenem-resistant bacteria. This study found that carbapenem-resistant acquisition has a significantly higher mortality rate and poorer clinical response compared to that of the ertapenem-resistance acquisition.
Bacteruria (also known as urinary tract infection) caused by CRKp and CSKp have similar risk factors. These include prior antibiotic use, admittance to an ICU, use of a permanent urinary catheter, and previous invasive procedures or operations. A retrospective study of patients with CRKp and CSKp infection asserted that the use of cephalosporins (a class of β-lactam antibiotics) used before invasive procedures was higher in patients with CRKp infection, suggesting that it is a risk factor.
In a three-year study, the prevalence of CRE was shown to be proportional to the lengths of stays of the patients in those hospitals. Policies regarding contact precaution for patients infected or colonized by Gram-negative pathogens were also observed in hospitals reporting decreases in CRE prevalence.
One case study showed that patients with a compromised immune response are especially susceptible to both CRE exposure and infection. In one study, an elderly patient with acute lymphoblastic leukemia being treated in a long-term care facility contracted a CRE infection. Her age and condition, combined with her environment and regulation by a catheter and mechanical ventilation, all contributed to a higher susceptibility. This highlights the importance of finding the source of the bacteria, as members of this class of patients are at continued risk for infection. Infection control and prevention of CRE should be the main focus in managing patients at high risk.
Another major risk factor is being in a country with unregulated antibiotic distribution. In countries where antibiotics are over-the counter and obtainable without a prescription, the incidence and prevalence of CRE infections were higher. One study from Japan found that 6.4% of healthy adults carried ESBL (mostly cefotaximase)-producing strains compared to 58.4% in Thailand, where antibiotics are available over the counter and without prescription. An Egyptian research group found that 63.3% of healthy adults were colonized.
In February 2015, the FDA reported about a transmission risk when people undergo a gastroenterology procedure called endoscopic retrograde cholangiopancreatography, where an endoscope enters the mouth, passes the stomach, and ends in the duodenum; if incompletely disinfected, the device can transmit CRE from one patient to another. The FDA's safety communication came a day after the UCLA Health System, Los Angeles, notified more than 100 patients that they may have been infected with CRE during endoscopies between October 2014 and January 2015. The FDA had issued its first notice about the devices in 2009.
In 1994, Stephen Crohn became the first person discovered to be completely resistant to HIV in all tests performed. In early 2000, researchers discovered a small group of sex workers in Nairobi, Kenya who were estimated to have sexual contact with 60 to 70 HIV positive clients a year without signs of infection. Researchers from Public Health Agency of Canada have identified 15 proteins unique to those virus-free sex workers. Later, however some sex workers were discovered to have contracted the virus, leading Oxford University researcher Sarah Rowland-Jones to believe continual exposure is a requirement for maintaining immunity.
Studies have found that men have a higher risk of getting XDR-TB than women. One study showed that the male to female ratio was more than threefold, with statistical relevance (P<0.05) Studies done on the effect of age and XDR-TB have revealed that individuals who are 65 and up are less likely to get XDR-TB. A study in Japan found that XDR-TB patients are more likely to be younger.
Initially all people that have been identified with this syndrome have an identical genetic change, an inframe single codon deletion in POLD1 resulting in a loss of serine at position 605. The POLD1 gene is expressed in all cells and the particular change seen in most patients results in loss of DNA polymerase activity but only mildly impairs the proof reading exonuclease activity. In 2014 a second genetic change was reported in an Italian patient, a novel heterozygous mutation in exon 13 (R507C).
Most cases identified to date have been caused by a spontaneous genetic change (so the parents of the individual are unaffected).
HIV develops resistance when it evades the effects of these treatments.
HIV drug resistance reduces the possible HIV medications a person can take due to cross resistance. In cross resistance, an entire medication class is considered ineffective in lowering a patient's HIV viral load because all the drugs in a given HIV class share the same mechanism of action. Therefore, development of resistance to one medication in a class precludes the use of all other medications in the same class. A blood test should be done to determine which drugs may be effective prior to initiation of treatment or during treatment to ensure resistance has not developed.
In 2004, one study estimated the percentage of the American HIV positive population with some form of drug resistance to be 76.3%. Certain intrinsic features of HIV facilitate its widespread resistance, most importantly its extremely high mutation rate.
In their 2017 HIV Drug Resistance Report, the World Health Organization conducted surveys in 14 countries to estimate the prevalence of resistance to HIV medications. One subgroup included only HIV-positive patients who have just initiated antiretroviral therapy in order to assess the prevalence of HIV drug resistance in treatment-naive patients, deemed "pretreatment drug resistance." Resistance to NNRTIs in this patient population ranged from 2.7% (in Myanmar) to 15.9% (in Uganda). Resistance to NRTIs ranged from 0.3% (in Namibia) to 6.8% (in Nicaragua). Resistance to protease inhibitors ranged from 0.3% (in Carmeroon and Myanmar) to 2.6% (in Mexico). Resistance to NNRTI + NRTI combination therapy ranged from 0.2% (in Myanmar) to 4.6% (in Uganda).
Carriers who refuse to wear a mask in public have been indefinitely involuntarily committed to regular jails, and cut off from contacting the world. Some have run away from the USA, complaining of abuse.
CRE resistance depends upon a number of factors such as the health of the patient, whether the patient has recently undergone a transplant, risk of co-infection, and use of multiple antibiotics.
Carbapenem minimal inhibitory concentrations (MICs) results may be more predictive of clinical patient outcomes than the current categorical classification of the MICs being listed as susceptible, intermediate, or resistant. The study aimed to define an all-cause hospital mortality breakpoint for carbapenem MICs that were adjusted for risk factors. Another objective was to determine if a similar breakpoint existed for indirect outcomes, such as the time to death and length of stay after infection for survivors. Seventy-one patients were included, of which 52 patients survived and 19 patients died. Classification and regression tree analysis determined a split of organism MIC between 2 and 4 mg/liter and predicted differences in mortality (16.1% for 2 mg/liter versus 76.9% for 4 mg/liter). In logistic regression controlling for confounders, each imipenem MIC doubling dilution doubled the probability of death. This classification scheme correctly predicted 82.6% of cases. Patients were accordingly stratified to MICs of ≤2 mg/liter (58 patients) and ≥4 mg/liter (13 patients). Patients in the group with a MIC of ≥4 mg/liter tended to be more ill. Secondary outcomes were also similar between groups. Patients with organisms that had an MIC of ≥4 mg/liter had worse outcomes than those with isolates of an MIC of ≤2 mg/liter.
At New York Presbyterian Hospital, part of Columbia University Medical Center in New York, NY, a study was conducted on the significant rise in carbapenem resistance in "K. pneumoniae" from 1999 to 2007. Following a positive blood culture from a patient, overall mortality was 23% in 7 days, 42% in 30 days, and 60% by the end of hospitalization. The overall in-hospital mortality rate was 48%.
At Soroka Medical Center, an Israeli university teaching hospital, a study was done between October 2005 and October 2008 to determine the direct mortality rate associated with carbapenem-resistant "K. pneumoniae" bloodstream infections. The crude mortality rate for those with the resistant bacteremia was 71.9%, and the attributable mortality rate was determined to be 50% with a 95% confidence interval. The crude mortality rate for control subjects was 21.9%. As a result of the study, Soroka Medical Center started an intensive program designed to prevent the spread of carbapenem-resistant "K. pneumoniae."
A 2013 retrospective study at the Shaare Zedek Medical Center of patients with urinary tract infections (bacteriuria) caused by carbapenem-resistant "Klebsiella pneumoniae" (CRKp) showed no statistically significant difference in mortality rates from patients with bacteriuria caused by carbapenem-susceptible "K. pneumoniae" (CSKp). A 29% mortality rate was seen in patients with CRKp infection compared to a 25% mortality rate in patients with CSKp infections that produced extended-spectrum beta-lactamase (ESBL). Both mortality rates were considerably higher than that of patients with drug-susceptible urosepsis. Most patients in the study suffered from other illnesses, including dementia, immune compromise, renal failure, or diabetes mellitus. The main risk factor for death found by the study was being bedridden, which significantly increased the chance of death. This suggests that the deaths were due to reasons other than bacteriuria. Total length of hospitalization was somewhat longer in patients with CRKp infections (28 ± 33 days compared to 22 ± 28 days for patients with CSKp infection).
In a case-control study of 99 patients compared with 99 controls at Mount Sinai Hospital (Manhattan), a 1,171 bed tertiary care teaching hospital, 38% of patients in long-term care that were afflicted with CRE died from "K. pneumoniae" infection. Patients had risk factors including diabetes, HIV infection, heart disease, liver disease, renal insufficiency, one was a transplant recipient. 72% of patients who were released from the hospital with CRE were readmitted within 90 days.
A 2008 study at Mount Sinai identified outcomes associated with Carbapenem-resistant "Klebsiella pneumoniae" infections, in which patients in need of organ or stem cell transplants, mechanical ventilation, prolonged hospitalization, or prior treatment with carbapenems, had an increased probability of infection with Carbapenem-resistant "K. pneumoniae". A combination of antibiotics worked to treat infection and survival rates of infected patients increased when the focus of infection was removed.
CRE infections can set in about 12 days after liver transplantation, and 18% of those patients died a year after transplantation in a 2012 study.
This not known with certainty but is estimated to be about one per million. It appears to be more common in females than males.
Many people with MDP syndrome are high achievers intellectually following careers in law, medicine and computing. A crucial point is that they do not have progeria and there is no evidence of accelerated intellectual decline with age in these patients. Equally life expectancy has not been shown to be reduced. Patients of 65 have been described in the literature and none of the patients are known to have malignancy. Therefore, there are many crucial differences with progeria and the name of progeroid in the title is confusing as this really refers to the lack of fat in the face and taut skin and not any intellectual or other age associated features.
A small proportion of humans show partial or apparently complete inborn resistance to HIV, the virus that causes AIDS. The main mechanism is a mutation of the gene encoding CCR5, which acts as a co-receptor for HIV. It is estimated that the proportion of people with some form of resistance to HIV is under 1%.
Nijmegen breakage syndrome (NBS), also known as Berlin breakage syndrome, ataxia telangiectasia variant 1 (AT-V1) and Seemanova syndrome, is a rare autosomal recessive congenital disorder causing chromosomal instability, probably as a result of a defect in the double Holliday junction DNA repair mechanism and/or the synthesis dependent strand annealing mechanism for repairing double strand breaks in DNA (see Homologous recombination).
NBS1 codes for a protein (nibrin) that has two major functions: (1) to stop the cell cycle in the S phase, when there are errors in the cell DNA (2) to interact with FANCD2 that can activate the BRCA1/BRCA2 pathway of DNA repair. This explains why mutations in the NBS1 gene lead to higher levels of cancer (see Fanconi anemia, Cockayne syndrome.)
The name derives from the Dutch city Nijmegen where the condition was first described.
Most people with NBS have West Slavic origins. The largest number of them live in Poland.
Drug, toxin, or chemical resistance is a consequence of evolution and is a response to pressures imposed on any living organism. Individual organisms vary in their sensitivity to the drug used and some with greater fitness may be capable of surviving drug treatment. Drug-resistant traits are accordingly inherited by subsequent offspring, resulting in a population that is more drug-resistant. Unless the drug used makes sexual reproduction or cell-division or horizontal gene transfer impossible in the entire target population, resistance to the drug will inevitably follow. This can be seen in cancerous tumors where some cells may develop resistance to the drugs used in chemotherapy. Chemotherapy causes fibroblasts near tumors to produce large amounts of the protein WNT16B. This protein stimulates the growth of cancer cells which are drug-resistant. Malaria in 2012 has become a resurgent threat in South East Asia and sub-Saharan Africa, and drug-resistant strains of "Plasmodium falciparum" are posing massive problems for health authorities. Leprosy has shown an increasing resistance to dapsone.
A rapid process of sharing resistance exists among single-celled organisms, and is termed horizontal gene transfer in which there is a direct exchange of genes, particularly in the biofilm state. A similar asexual method is used by fungi and is called "parasexuality". Examples of drug-resistant strains are to be found in microorganisms such as bacteria and viruses, parasites both endo- and ecto-, plants, fungi, arthropods, mammals, birds, reptiles, fish, and amphibians.
In the domestic environment, drug-resistant strains of organism may arise from seemingly safe activities such as the use of bleach, tooth-brushing and mouthwashing, the use of antibiotics, disinfectants and detergents, shampoos, and soaps, particularly antibacterial soaps, hand-washing, surface sprays, application of deodorants, sunblocks and any cosmetic or health-care product, insecticides, and dips. The chemicals contained in these preparations, besides harming beneficial organisms, may intentionally or inadvertently target organisms that have the potential to develop resistance.
"Drug resistance develops naturally, but careless practices in drug supply and use are hastening it unnecessarily." - Center for Global Development
"The overuse of antibacterial cleaning products in the home may be producing strains of multi-antibiotic-resistant bacteria." - Better Health Channel - Australian Government
"The use and misuse of antimicrobials in human medicine and animal husbandry over the past 70 years has led to a relentless rise in the number and types of microorganisms resistant to these medicines - leading to death, increased suffering and disability, and higher healthcare costs." - World Health Organisation 2010
"Deaths from acute respiratory infections, diarrhoeal diseases, measles, AIDS, malaria, and tuberculosis account for more than 85% of the mortality from infection worldwide. Resistance to first-line drugs in most of the pathogens causing these diseases ranges from zero to almost 100%. In some instances resistance to second- and thirdline agents is seriously compromising treatment outcome. Added to this is the significant global burden of resistant, hospital-acquired infections, the emerging problems of antiviral resistance and the increasing problems of drug resistance in the neglected parasitic diseases of poor and marginalized populations." - WHO Global Strategy for Containment of Antimicrobial Resistance 2010
Familial acanthosis may arise as a result of an autosomal dominant trait, presenting at birth or developing during childhood.
Drug resistance is the reduction in effectiveness of a medication such as an antimicrobial or an antineoplastic in curing a disease or condition. The term is used in the context of resistance that pathogens or cancers have "acquired", that is, resistance has evolved. Antimicrobial resistance and antineoplastic resistance challenge clinical care and drive research. When an organism is resistant to more than one drug, it is said to be multidrug-resistant. Even the immune system of an organism is in essence a drug delivery system, albeit endogenous, and faces the same arms race problems as external drug delivery.
The development of antibiotic resistance in particular stems from the drugs targeting only specific bacterial molecules (almost always proteins). Because the drug is "so" specific, any mutation in these molecules will interfere with or negate its destructive effect, resulting in antibiotic resistance. Furthermore there is mounting concern over the abuse of antibiotics in the farming of livestock, which in the European Union alone accounts for three times the volume dispensed to humans – leading to development of super-resistant bacteria.
Bacteria are capable of not only altering the enzyme targeted by antibiotics, but also by the use of enzymes to modify the antibiotic itself and thus neutralise it. Examples of target-altering pathogens are "Staphylococcus aureus", vancomycin-resistant enterococci and macrolide-resistant "Streptococcus", while examples of antibiotic-modifying microbes are "Pseudomonas aeruginosa" and aminoglycoside-resistant "Acinetobacter baumannii".
In short, the lack of concerted effort by governments and the pharmaceutical industry, together with the innate capacity of microbes to develop resistance at a rate that outpaces development of new drugs, suggests that existing strategies for developing viable, long-term anti-microbial therapies are ultimately doomed to failure. Without alternative strategies, the acquisition of drug resistance by pathogenic microorganisms looms as possibly one of the most significant public health threats facing humanity in the 21st century.
Resistance to chemicals is only one aspect of the problem, another being resistance to physical factors such as temperature, pressure, sound, radiation and magnetism, and not discussed in this article, but found at Physical factors affecting microbial life.
HIV drug resistance occurs when microevolution causes virions to become tolerant to antiretroviral treatments.
Endocrine syndromes associated with acanthosis nigricans can develop in many conditions, particularly:
- starts with insulin resistance, such as diabetes mellitus and metabolic syndrome
- excess circulating androgens, particularly Cushing's disease, acromegaly, polycystic ovarian disease
- Addison's disease and hypothyroidism
- Rare diseases, including pinealoma, leprechaunism, lipoatrophic diabetes, pineal hyperplasia syndrome, pituitary basophilism, ovarian hyperthecosis, stromal luteoma, ovarian dermoid cysts, Prader-Willi syndrome, and Alstrom syndrome.
Acanthosis nigricans associated with endocrine dysfunction is more insidious in its onset, is less widespread, and the patients are often concurrently obese.
Patients with the following conditions, treatments or situations are at increased risk for invasive candidiasis.
- Critical illness
- Long-term intensive care unit stay
- Abdominal surgery (aggravated by anastomotic leakage or repeat laparotomies)
- Immunosuppressive diseases
- Acute necrotizing pancreatitis
- Malignant hematologic disease
- Solid-organ transplantation
- Hematopoietic stem cell transplantation
- Solid-organ tumors
- Neonates (especially low birth weight and preterm infants)
- Broad-spectrum antibiotic treatment
- Central venous catheter
- Internal prosthetic device
- Total parenteral nutrition
- Hemodialysis
- Glucocorticoid use
- Chemotherapy
- Noninvasive "Candida" colonization (particularly if multifocal)
Recent research has shown that AMAG is a result of the immune system attacking the parietal cells.
"Environmental Metaplastic Atrophic Gastritis" (EMAG) is due to environmental factors, such as diet and "H. pylori" infection. EMAG is typically confined to the body of the stomach. Patients with EMAG are also at increased risk of gastric carcinoma.
The condition is transmitted as an autosomal recessive trait, and often affects children of consanguineous parents. The physical findings and symptoms vary greatly among each individual.
Genetic diseases are determined by two genes, one from the mother and one from the father. Recessive genetic disorders occur when an individual inherits the same abnormal gene for the same trait from each parent. If one of the inherited genes is normal, while the other is for the disease, the person will only be a carrier and will not display any symptoms.
The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25 percent with each pregnancy. The risk to have a child who is a carrier like the parents is 50 percent with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25 percent.
Researchers have determined that the Rabson–Mendenhall syndrome is caused by mutations of the insulin receptor gene. The insulin receptor gene is located on the short arm (p) of chromosome 19. Mutations of the insulin-receptor gene lead to an alteration of structure or reduced number of insulin receptors. This results in reduced binding of insulin, and may also lead to abnormalities in the post-receptor pathway.
Individuals with Rabson-Mendenall syndrome will need ways to compensate for their insulin resistance, and may do this by increasing insulin secretion. This can lead to excessive insulin levels in the blood (hyperinsulinemia), which can be responsible for multiple symptoms. Definitive genotype–phenotype correlation for insulin receptor defects is difficult to establish primarily due to the rarity of these syndromes. However, researchers believe more severe phenotype changes are due to a mutation in the alpha subunit of the receptor.
AGL with autoimmune origin is responsible for about 25% of all AGL reports. Those with autoimmune origin stems from other autoimmune diseases, most commonly with juvenile dermatomyositis and autoimmune hepatitis, but also occurs with rheumatoid arthritis, systemic lupus erythematous, and Sjogren syndrome.