Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Approximately 20–35% of people with severe sepsis and 30–70% of people with septic shock die. Lactate is a useful method of determining prognosis with those who have a level greater than 4 mmol/L having a mortality of 40% and those with a level of less than 2 mmol/L have a mortality of less than 15%.
There are a number of prognostic stratification systems such as APACHE II and Mortality in Emergency Department Sepsis. APACHE II factors in the person's age, underlying condition, and various physiologic variables to yield estimates of the risk of dying of severe sepsis. Of the individual covariates, the severity of underlying disease most strongly influences the risk of death. Septic shock is also a strong predictor of short- and long-term mortality. Case-fatality rates are similar for culture-positive and culture-negative severe sepsis. The Mortality in Emergency Department Sepsis (MEDS) score is simpler and useful in the emergency department environment.
Some people may experience severe long-term cognitive decline following an episode of severe sepsis, but the absence of baseline neuropsychological data in most people with sepsis makes the incidence of this difficult to quantify or to study.
Sepsis causes millions of deaths globally each year and is the most common cause of death in people who have been hospitalized. The worldwide incidence of sepsis is estimated to be 18 million cases per year. In the United States sepsis affects approximately 3 in 1,000 people, and severe sepsis contributes to more than 200,000 deaths per year.
Sepsis occurs in 1–2% of all hospitalizations and accounts for as much as 25% of ICU bed utilization. Due to it rarely being reported as a primary diagnosis (often being a complication of cancer or other illness), the incidence, mortality, and morbidity rates of sepsis are likely underestimated. A study by the Agency for Healthcare Research and Quality (AHRQ) of selected States found that there were approximately 651 hospital stays per 100,000 population with a sepsis diagnosis in 2010. It is the second-leading cause of death in non-coronary intensive care unit (ICU) and the tenth-most-common cause of death overall (the first being heart disease). Children under 12 months of age and elderly people have the highest incidence of severe sepsis. Among U.S. patients who had multiple sepsis hospital admissions in 2010, those who were discharged to a skilled nursing facility or long term care following the initial hospitalization were more likely to be readmitted than those discharged to another form of care. A study of 18 U.S. States found that, amongst Medicare patients in 2011, sepsis was the second most common principal reason for readmission within 30 days.
Several medical conditions increase a person's susceptibility to infection and developing sepsis. Common sepsis risk factors include age (especially the very young and old); conditions that weaken the immune system such as cancer, diabetes, or the absence of a spleen; and major trauma and burns.
Sepsis has a worldwide incidence of more than 20 million cases a year, with mortality due to septic shock reaching up to 50 percent even in industrialized countries.
According to the U.S. Centers for Disease Control, septic shock is the thirteenth leading cause of death in the United States and the most frequent cause of deaths in intensive care units. There has been an increase in the rate of septic shock deaths in recent decades, which is attributed to an increase in invasive medical devices and procedures, increases in immunocompromised patients, and an overall increase in elderly patients.
Tertiary care centers (such as hospice care facilities) have 2-4 times the rate of bacteremia than primary care centers, 75% of which are hospital-acquired infections.
The process of infection by bacteria or fungi may result in systemic signs and symptoms that are variously described. Approximately 70% of septic shock cases were once traceable to gram-negative bacteria that produce endotoxins, however, with the emergence of MRSA and the increased use of arterial and venous catheters, gram-positive bacteria are implicated approximately as commonly as bacilli. In rough order of increasing severity these are, bacteremia or fungemia; sepsis, severe sepsis or sepsis syndrome; septic shock, refractory septic shock, multiple organ dysfunction syndrome, and death.
35% of septic shock cases derive from urinary tract infections, 15% from the respiratory tract, 15% from skin catheters (such as IVs), and more than 30% of all cases are idiopathic in origin.
The mortality rate from sepsis is approximately 40% in adults and 25% in children. It is significantly greater when sepsis is left untreated for more than seven days.
If a person is suspected as having died from anthrax, precautions should be taken to avoid skin contact with the potentially contaminated body and fluids exuded through natural body openings. The body should be put in strict quarantine. A blood sample should then be collected and sealed in a container and analyzed in an approved laboratory to ascertain if anthrax is the cause of death. Then, the body should be incinerated. Microscopic visualization of the encapsulated bacilli, usually in very large numbers, in a blood smear stained with polychrome methylene blue (McFadyean stain) is fully diagnostic, though culture of the organism is still the gold standard for diagnosis. Full isolation of the body is important to prevent possible contamination of others. Protective, impermeable clothing and equipment such as rubber gloves, rubber apron, and rubber boots with no perforations should be used when handling the body. No skin, especially if it has any wounds or scratches, should be exposed. Disposable personal protective equipment is preferable, but if not available, decontamination can be achieved by autoclaving. Disposable personal protective equipment and filters should be autoclaved, and/or burned and buried. Anyone working with anthrax in a suspected or confirmed person should wear respiratory equipment capable of filtering particles of their size or smaller. The US National Institute for Occupational Safety and Health – and Mine Safety and Health Administration-approved high-efficiency respirator, such as a half-face disposable respirator with a high-efficiency particulate air filter, is recommended. All possibly contaminated bedding or clothing should be isolated in double plastic bags and treated as possible biohazard waste. The body of an infected person should be sealed in an airtight body bag. Dead people who are opened and not burned provide an ideal source of anthrax spores. Cremating people is the preferred way of handling body disposal. No embalming or autopsy should be attempted without a fully equipped biohazard laboratory and trained, knowledgeable personnel.
Anthrax can enter the human body through the intestines (ingestion), lungs (inhalation), or skin (cutaneous) and causes distinct clinical symptoms based on its site of entry. In general, an infected human will be quarantined. However, anthrax does not usually spread from an infected human to a noninfected human. But, if the disease is fatal to the person's body, its mass of anthrax bacilli becomes a potential source of infection to others and special precautions should be used to prevent further contamination. Inhalational anthrax, if left untreated until obvious symptoms occur, is usually fatal.
Anthrax can be contracted in laboratory accidents or by handling infected animals or their wool or hides. It has also been used in biological warfare agents and by terrorists to intentionally infect as exemplified by the 2001 anthrax attacks.
The Centers for Disease Control and Prevention (CDC) estimated roughly 1.7 million hospital-associated infections, from all types of bacteria combined, cause or contribute to 99,000 deaths each year. Other estimates indicate 10%, or 2 million, patients a year become infected, with the annual cost ranging from $4.5 billion to $11 billion. In the USA, the most frequent type of infection hospitalwide is urinary tract infection (36%), followed by surgical site infection (20%), and bloodstream infection and pneumonia (both 11%).
In 2012 the Health Protection Agency reported the prevalence rate of HAIs in England was 6.4% in 2011, against a rate of 8.2% in 2006. With respiratory tract, urinary tract and surgical site infections the most common types of HAI reported.
Treatment for gastroenteritis due to "Y. enterocolitica" is not needed in the majority of cases. Severe infections with systemic involvement (sepsis or bacteremia) often requires aggressive antibiotic therapy; the drugs of choice are doxycycline and an aminoglycoside. Alternatives include cefotaxime, fluoroquinolones, and co-trimoxazole.
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
While there is tentative evidence for β-Blocker therapy to help control heart rate, evidence is not significant enough for its routine use. There is tentative evidence that steroids may be useful in improving outcomes.
Tentative evidence exists that Polymyxin B-immobilized fiber column hemoperfusion may be beneficial in treatment of septic shock. Trials are ongoing and it is currently being used in Japan and Western Europe.
Recombinant activated protein C (drotrecogin alpha) in a 2011 Cochrane review was found not to decrease mortality and to increase bleeding, and thus, was not recommended for use. Drotrecogin alfa (Xigris), was withdrawn from the market in October 2011.
In the western world, GBS (in the absence of effective prevention measures) is the main cause of bacterial infections in newborns, such as septicemia, pneumonia, and meningitis, which can lead to death or long-term after effects.
GBS infections in newborns are separated into two clinical types, early-onset disease (GBS-EOD) and late-onset disease (GBS-LOD). GBS-EOD manifests from 0 to 7 living days in the newborn, most of the cases of EOD being apparent within 24 h from birth. GBS-LOD starts between 7 and 90 days after birth.
The most common clinical syndromes of GBS-EOD are septicemia without apparent location, pneumonia, and less frequently meningitis. Bacteremia without a focus occurs in 80-85%, pneumonia in 10-15%, and meningitis in 5-10% of cases. The initial clinical findings are respiratory signs in more than 80% of cases. Neonates with meningitis often have an initial clinical presentation identical to presentation in those without meningeal affectation. An exam of the cerebrospinal fluid is often necessary to rule out meningitis.
Colonization with GBS during labour is the primary risk factor for the development of GBS-EOD. GBS-EOD is acquired vertically (vertical transmission), through exposure of the fetus or the baby to GBS from the vagina of a colonized woman, either "in utero" (because of ascending infection) or during birth, after rupture of membranes. Infants can also be infected during passage through the birth canal, nevertheless, newborns who acquire GBS through this route can only become colonized, and these colonized infants usually do not develop GBS-EOD.
Roughly 50% of newborns of GBS colonized mothers are also GBS colonized and (without prevention measures) 1-2% of these newborns will develop GBS-EOD.
In the past, the incidence of GBS-EOD ranged from 0.7 to 3.7 per thousand live births in the US, and from 0.2 to 3.25 per thousand in Europe.
In 2008, after widespread use of antenatal screening and intrapartum antibiotic prophylaxis, the Centers for Disease Control and Prevention of United States reported an incidence of 0.28 cases of GBS-EOD per thousand live births in the US.
Though maternal GBS colonization is the key determinant for GBS-EOD, other factors also increase the risk. These factors are:
- Onset of labour before 37 weeks of gestation (premature birth)
- Prolonged rupture of membranes (longer duration of membrane rupture) (≥18 h before delivery)
- Intrapartum (during childbirth) fever (>38 °C, >100.4 °F)
- Amniotic infections (chorioamnionitis)
- Young maternal age
Nevertheless, most babies who develop GBS-EOD are born to colonized mothers without any of these risk factors. Heavy GBS vaginal colonization is also associated with a higher risk for GBS-EOD. Women who had one of these risk factors but who are not GBS colonized at labour are at low risk for GBS-EOD compared to women who were colonized prenatally, but had none of the aforementioned risk factors.
Presence of low levels of anticapsular antibodies against GBS in the mother are also of great importance for the development of GBS-EOD.
Because of that, a previous sibling with GBS-EOD is also an important risk factor for the development of the infection in subsequent deliveries, probably reflecting the lack of protective antibodies in the mother.
Overall, the case fatality rates from GBS-EOD have declined, from 50% observed in studies from the 1970s to between 2 and 10% in recent years, mainly as a consequence of improvements in therapy and management. Fatal neonatal infections by GBS are more frequent among premature infants.
GBS-LOD affects infants from 7 days to 3 months of age and has a lower case fatality rate (1%-6%) than GBS-EOD. Clinical syndromes of GBS-EOD are bacteremia without a focus (65%), meningitis (25%), cellulitis, osteoarthritis, and pneumonia.
Prematurity has been reported to be the main risk factor. Each week of decreasing gestation increases the risk by a factor of 1.34 for developing GBS-LOD.
GBS-LOD is not acquired through vertical transmission during delivery; it can be acquired later from the mother from breast milk or from environmental and community sources.
GBS-LOD commonly shows nonspecific signs, and diagnosis should be made obtaining blood cultures in febrile newborns. Hearing loss and mental impairment can be a long-term consequence of GBS meningitis.
Yersiniosis is an infectious disease caused by a bacterium of the genus "Yersinia". In the United States, most yersiniosis infections among humans are caused by "Yersinia enterocolitica". The infection by "Y. enterocolitica" is also known as pseudotuberculosis. Yersiniosis is mentioned as a specific zoonotic disease to prevent outbreaks in European Council Directive 92/117/EEC.
Infection with " Y . enterocolitica" occurs most often in young children. The infection is thought to be contracted through the consumption of undercooked meat products, unpasteurized milk, or water contaminated by the bacteria. It has been also sometimes associated with handling raw chitterlings.
Another bacterium of the same genus, "Yersinia pestis", is the cause of Plague.
Outbreaks occur in cold and wet weather (in late summer, fall and winter).
The outbreaks are often traced back to the presence of rodents in the breeding houses. These are thought to spread the disease from carcasses of dead birds (possibly from neighboring backyards), improperly disposed of.
Once the disease is introduced to a flock, it will stay until culling. Chronic carriers can always lead to re-emerging of the disease in susceptible birds...
In wild birds, this disease is most commonly associated with wetlands. Blanchong et al. determined that wetlands act as short term reservoirs, recording large amounts of the bacterium in the soil and water through the duration of the outbreak. Wetlands, however, are not long term reservoirs.
The disease presents in two very different forms: acute and chronic. Birds with chronic avian cholera, more common in domestic fowl, exhibit prolonged illness with more localized infections. Chronic infection has been demonstrated in snow geese, and these individuals are believed to be long term migrating reservoirs for the disease.
Once the bacteria gets introduced into a population of susceptible birds, an outbreak of acute avian cholera follows. Infected birds will die 6–12 hours after contracting the bacterium, and very few ill birds have been described. Due to association and dense aggregations, waterfowl are most commonly affected by "P. multocida", however scavengers and other water birds are often affected in large multi-species outbreaks.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
Haemorrhagic septicaemia is one of the most economically important pasteurelloses. Haemorrhagic septicaemia in cattle and buffaloes was previously known to be associated with one of two serotypes of "P. multocida": Asian B:2 and African E:2 according to the Carter-Heddleston system, or 6:B and 6:E using the Namioka-Carter system.
The disease occurs mainly in cattle and buffaloes, but has also been reported in goats ("Capra aegagrus hircus"), African buffalo ("Syncerus nanus"), camels, horses and donkeys ("Equus africanus asinus"), in pigs infected by serogroup B, and in wild elephants ("Elephas maximus"). Serotypes B:1 and B:3,4 have caused a septicaemic disease in antelope ("Antilocapra americana") and elk ("Cervus canadensis"), respectively. Serotype B:4 was associated with the disease in bison ("Bison bison").
Serotypes E:2 and B:2 were associated with HS outbreaks in Africa and Asia respectively. Serotype E:2 was reported in Senegal, Mali, Guinea, Ivory Coast, Nigeria, Cameroon, the Central African Republic and Zambia. However, it is now inaccurate to associate outbreaks in Africa with serotype E:2 as many outbreaks of HS in Africa have now been associated with serogroup B. In the same manner, serogroup E has been associated with outbreaks in Asia. For instance, one record of "Asian serotype" (B:2) was reported in Cameroon. Some reports showed that serotype B:2 may be present in some East African countries. Both serogroups B and E have been reported in Egypt and Sudan.
Natural routes of infection are inhalation and/or ingestion. Experimental transmission has succeeded using intranasal aerosol spray or oral drenching. When subcutaneous inoculation is used experimentally, it results in rapid onset of the disease, a shorter clinical course and less marked pathological lesions compared to the longer course of disease and more profound lesions of oral drenching and the intranasal infection by aerosols.
When HS was introduced for the first time into a geographic area, morbidity and mortality rates were high, approaching 100% unless animals were treated in the very early stages of disease.
Though GBS colonization is asymptomatic and, in general, does not cause problems, it can sometimes cause serious illness for the mother and the baby during gestation and after delivery. GBS infections in the mother can cause chorioamnionitis (intra-amniotic infection or severe infection of the placental tissues) infrequently, and postpartum infections (after birth). GBS urinary tract infections may induce labour and cause premature delivery (preterm birth) and miscarriage.
A wide variety of clinical signs have been described for HS in cattle and buffaloes. The incubation periods (the time between exposure and observable disease) for buffalo calves 4–10 months of age varies according to the route of infection. The incubation period is 12–14 hours, approximately 30 hours and 46–80 hours for subcutaneous infection, oral infection and natural exposure, respectively.
There is variability in the duration of the clinical course of the disease. In the case of experimental subcutaneous infection, the clinical course lasted only a few hours, while it persisted for 2–5 days following oral infection and in buffaloes and cattle that had been exposed to naturally-infected animals. It has also been recorded from field observations that the clinical courses of per-acute and acute cases were 4–12 hours and 2–3 days, respectively.
Generally, progression of the disease in buffaloes and cattle is divided into three phases. Phase one is characterised by fever, with a rectal temperature of , loss of appetite and depression. Phase two is typified by increased respiration rate (40–50/minute), laboured breathing, clear nasal discharge (turns opaque and mucopurulent as the disease progresses), salivation and submandibular oedema spreading to the pectoral (brisket) region and even to the forelegs. Finally, in phase three, there is typically recumbency, continued acute respiratory distress and terminal septicaemia. The three phases overlap when the disease course is short. In general, buffaloes have a more acute onset of disease than cattle, with a shorter duration.
The mortality of the disease in 1909, as recorded in the British Army and Navy stationed in Malta, was 2%. The most frequent cause of death was endocarditis. Recent advances in antibiotics and surgery have been successful in preventing death due to endocarditis. Prevention of human brucellosis can be achieved by eradication of the disease in animals by vaccination and other veterinary control methods such as testing herds/flocks and slaughtering animals when infection is present. Currently, no effective vaccine is available for humans. Boiling milk before consumption, or before using it to produce other dairy products, is protective against transmission via ingestion. Changing traditional food habits of eating raw meat, liver, or bone marrow is necessary, but difficult to implement. Patients who have had brucellosis should probably be excluded indefinitely from donating blood or organs. Exposure of diagnostic laboratory personnel to "Brucella" organisms remains a problem in both endemic settings and when brucellosis is unknowingly imported by a patient. After appropriate risk assessment, staff with significant exposure should be offered postexposure prophylaxis and followed up serologically for six months. Recently published experience confirms that prolonged and frequent serological follow-up consumes significant resources without yielding much information, and is burdensome for the affected staff, who often fail to comply. The side effects of the usual recommended regimen of rifampicin and doxycycline for three weeks also reduce treatment adherence. As no evidence shows treatment with two drugs is superior to monotherapy, British guidelines now recommend doxycycline alone for three weeks and a less onerous follow-up protocol.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
Acute renal failure occurs in 55–70% of patients with STEC-HUS, although up to 70–85% recover renal function. Patients with aHUS generally have poor outcomes, with up to 50% progressing to ESRD or irreversible brain damage; as many as 25% die during the acute phase. However, with aggressive treatment, more than 90% of patients survive the acute phase of HUS, and only about 9% may develop ESRD. Roughly one-third of persons with HUS have abnormal kidney function many years later, and a few require long-term dialysis. Another 8% of persons with HUS have other lifelong complications, such as high blood pressure, seizures, blindness, paralysis, and the effects of having part of their colon removed. The overall mortality rate from HUS is 5–15%. Children and the elderly have a worse prognosis.
While typical drug side effects reactions are mild to moderate; sometimes serious adverse effects occur.
As of 2016, the U.S. FDA recommended that "serious side effects associated with fluoroquinolone antibacterial drugs generally outweigh the benefits for patients with acute sinusitis, acute bronchitis, and uncomplicated urinary tract infections who have other treatment options. For patients with these conditions, fluoroquinolones should be reserved for those who do not have alternative treatment options."
Partly as a result of the efforts of Public Citizen, in 2008 the U.S. FDA ordered boxed warnings on all fluoroquinolones, advising consumers of an enhanced risk of tendon damage.
Prominent among these are side effects that became the subject of a black box warning by the U.S. FDA in 2016. The FDA wrote: "An FDA safety review has shown that fluoroquinolones when used systemically (i.e. tablets, capsules, and injectable) are associated with disabling and potentially permanent serious side effects that can occur together. These side effects can involve the tendons, muscles, joints, nerves, and central nervous system."
Quinolones are associated with a small risk of tendonitis and tendon rupture; a 2013 review found the incidence of tendon injury among those taking fluoroquinolones to be between 0.08 and 0.2%. The risk appears to be higher among people older than 60 and those also taking corticosteroids; there may also be higher risk among people who are male, have a pre-existing joint or tendon issue, have kidney disease, and are highly active. Some experts have advised avoidance of fluoroquinolones in athletes. If tendonitis occurs, it generally appears within one month, and the most common tendon that is injured appears to be the Achilles tendon. The cause is not well understood.
Nervous system effects include insomnia, restlessness, and rarely, seizure, convulsions, and psychosis. Other rare and serious adverse events have been observed with varying degrees of evidence for causation.
More generally, fluoroquinolones are tolerated, with typical drug side effects being mild to moderate. Common side effects include gastrointestinal effects such as nausea, vomiting, and diarrhea, as well as headache and insomnia. Postmarketing surveillance has revealed a variety of relatively rare but serious adverse effects that are associated with all members of the fluoroquinolone antibacterial class. Among these, tendon problems and exacerbation of the symptoms of the neurological disorder myasthenia gravis are the subject of "black box" warnings in the United States.
The overall rate of adverse events in patients treated with fluoroquinolones is roughly similar to that seen in patients treated with other antibiotic classes. A U.S. Centers for Disease Control and Prevention study found patients treated with fluoroquinolones experienced adverse events severe enough to lead to an emergency department visit more frequently than those treated with cephalosporins or macrolides, but less frequently than those treated with penicillins, clindamycin, sulfonamides, or vancomycin.
Fluoroquinolones prolong the heart's QT interval by blocking voltage-gated potassium channels. Prolongation of the QT interval can lead to torsades de pointes, a life-threatening arrhythmia, but in practice this appears relatively uncommon in part because the most widely prescribed fluoroquinolones (ciprofloxacin and levofloxacin) only minimally prolong the QT interval.
"Clostridium difficile" colitis may occur in connection with the use of any antibacterial drug, especially those with a broad spectrum of activity such as clindamycin, cephalosporins, and fluoroquinolones. Fluoroquinoline treatment is associated with risk that is similar to or less than that associated with broad spectrum cephalosporins. Fluoroquinoline administration may be associated with the acquisition and outgrowth of a particularly virulent "Clostridium" strain.
Events that may occur in acute overdose are rare, and include renal failure and seizure. Susceptible groups of patients, such as children and the elderly, are at greater risk of adverse reactions during therapeutic use.
In 2017 the FDA included the following important warning:
"The U.S. Food and Drug Administration (FDA) has required the drug labels and Medication Guides for all fluoroquinolone antibacterial drugs be updated to better describe the serious side effect of peripheral neuropathy. This serious nerve damage potentially caused by fluoroquinolones (see Table for a list) may occur soon after these drugs are taken and may be permanent.
The risk of peripheral neuropathy occurs only with fluoroquinolones that are taken by mouth or by injection. Approved fluoroquinolone drugs include levofloxacin (Levaquin), ciprofloxacin (Cipro), moxifloxacin (Avelox), norfloxacin (Noroxin), ofloxacin (Floxin), and gemifloxacin (Factive). The topical formulations of fluoroquinolones, applied to the ears or eyes, are not known to be associated with this risk.
If a patient develops symptoms of peripheral neuropathy, the fluoroquinolone should be stopped, and the patient should be switched to another, non-fluoroquinolone antibacterial drug, unless the benefit of continued treatment with a fluoroquinolone outweighs the risk. Peripheral neuropathy is a nerve disorder occurring in the arms or legs. Symptoms include pain, burning, tingling, numbness, weakness, or a change in sensation to light touch, pain or temperature, or the sense of body position. It can occur at any time during treatment with fluoroquinolones and can last for months to years after the drug is stopped or be permanent. Patients using fluoroquinolones who develop any symptoms of peripheral neuropathy should tell their health care professionals right away.
FDA will continue to evaluate the safety of drugs in the fluoroquinolone class and will communicate with the public again if additional information becomes available. "
A superinfection is a second infection superimposed on an earlier one, especially by a different microbial agent of exogenous or endogenous origin, that is resistant to the treatment being used against the first infection. Examples of this in bacteriology are the overgrowth of endogenous "Clostridium difficile" which occurs following treatment with a broad-spectrum antibiotic, and pneumonia or septicemia from "Pseudomonas aeruginosa" in some immuno-compromised patients.
In virology, the definition is slightly different. Superinfection is the process by which a cell that has previously been infected by one virus gets co-infected with a different strain of the virus, or another virus, at a later point in time. Viral superinfections may be resistant to the antiviral drug or drugs that were being used to treat the original infection. Viral superinfections may also be less susceptible to the host's immune response.
Brucellosis in humans is usually associated with the consumption of unpasteurized milk and soft cheeses made from the milk of infected animals, primarily goats, infected with "Brucella melitensis" and with occupational exposure of laboratory workers, veterinarians, and slaughterhouse workers. Some vaccines used in livestock, most notably "B. abortus" strain 19, also cause disease in humans if accidentally injected. Brucellosis induces inconstant fevers, miscarriage, sweating, weakness, anaemia, headaches, depression, and muscular and bodily pain. The other strains, "B. suis" and "B. canis", cause infection in pigs and dogs, respectively.
Causes (listed in order of decreasing frequency) include endometritis, urinary tract infection, pneumonia/atelectasis, wound infection, and septic pelvic thrombophlebitis. Septic risk factors for each condition are listed in order of the postpartum day (PPD) on which the condition generally occurs.
- PPD 0: atelectasis risk factors include general anesthesia, cigarette smoking, and obstructive lung disease.
- PPD 1–2: urinary tract infections risk factors include multiple catheterization during labor, multiple vaginal examinations during labor, and untreated bacteriuria.
- PPD 2–3: endometritis ( the most common cause ) risk factors include emergency cesarean section, prolonged membrane rupture, prolonged labor, and multiple vaginal examinations during labor.
- PPD 4–5: wound infection risk factors include emergency cesarean section, prolonged membrane rupture, prolonged labor, and multiple vaginal examination during labor.
- PPD 5–6: septic pelvic thrombophlebitis risk factors include emergency cesarean section, prolonged membrane rupture, prolonged labor, and diffuse difficult vaginal childbirth.
- PPD 7–21: mastitis risk factors include nipple trauma from breastfeeding.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).