Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Few studies have examined the prevalence of FCED on a large scale. First assessed in a clinical setting, Fuchs himself estimated the occurrence of dystrophia epithelialis corneae to be one in every 2000 patients; a rate that is likely reflective of those who progress to advanced disease. Cross-sectional studies suggest a relatively higher prevalence of disease in European countries relative to other areas of the world. Fuchs' dystrophy rarely affects individuals under 50 years of age.
Reis-Bücklers corneal dystrophy is not associated with any systemic conditions.
Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Mutations in TGFBI which encodes "transforming growth factor beta induced" cause several forms of corneal dystrophies including granular corneal dystrophy, lattice corneal dystrophy, epithelial basement membrane dystrophy, Reis-Bucklers corneal dystrophy, and Thiel–Behnke dystrophy.
Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or rarely X-linked recessive Mendelian mode of inheritance:
The disease has been associated with mutations in TGFBI gene on chromosome 5q which encodes for keratoepithelin. The inheritance is autosomal dominant.
STGD1 is the most common form of inherited juvenile macular degeneration with a prevalence of approximately 1 in 10,000 births.
Phototherapeutic keratectomy (PTK) done by an ophthalmologist can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies including EBMD.
Lattice corneal dystrophy type, also known as Biber-Haab-Dimmer dystrophy, is a rare form of corneal dystrophy. It has no systemic manifestations, unlike the other type of the dystrophy, Lattice corneal dystrophy type II. Lattice corneal dystrophy was first described by Swiss ophthalmologist Hugo Biber in 1890.
Lattice dystrophy gets its name from an accumulation of amyloid deposits, or abnormal protein fibers, throughout the middle and anterior stroma.
In case of corneal erosion, a doctor may prescribe eye drops and ointments to reduce the friction on the eroded cornea. In some cases, an eye patch may be used to immobilize the eyelids. With effective care, these erosions usually heal within three to seven days, although occasional sensations of pain may occur for the next six-to-eight weeks. As patients with LCD suffer with dry eyes as a result of erosion, a new technique involving the insertion of punctal plugs (both upper and lower) can reduce the amount of drops used a day, aiding ocular stability.
By about age 40, some people with lattice dystrophy will have scarring under the epithelium, resulting in a haze on the cornea that can greatly obscure vision. In this case, a corneal transplantation may be needed. There have been many cases in which teenage patients have had the procedure, which accounts for the change in severity of the condition from person to person.
Although people with lattice dystrophy have an excellent chance for a successful corneal transplantation, the disease may also arise in the donor cornea in as little as three years. In one study, about half of the transplant patients with lattice dystrophy had a recurrence of the disease between two and 26 years after the operation. Of these, 15 percent required a second corneal transplant. Early lattice and recurrent lattice arising in the donor cornea responds well to treatment with the excimer laser.
Phototherapeutic keratectomy (PTK) using [Excimer laser] can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies.
Epithelial basement membrane dystrophy (EBMD), also known as map-dot-fingerprint dystrophy and Cogans's microcystic dystrophy, is a disorder of the eye that can cause pain and dryness.
It is sometimes included in the group of corneal dystrophies. It diverges from the formal definition of corneal dystrophy in being in most cases non-familial. It also has a fluctuating course, while for a typical corneal dystrophy the course is progressive. When it is considered part of this group, it is the most common type of corneal dystrophy.
A corneal dystrophy can be caused by an accumulation of extraneous material in the cornea, including lipids and cholesterol crystals.
Granular corneal dystrophy is a slowly progressive corneal dystrophy that most often begins in early childhood.
Granular corneal dystrophy has two types:
- Granular corneal dystrophy type I , also corneal dystrophy Groenouw type I, is a rare form of human corneal dystrophy. It was first described by German ophthalmologist Arthur Groenouw in 1890.
- Granular corneal dystrophy type II, also called Avellino corneal dystrophy or combined granular-lattice corneal dystrophy is also a rare form of corneal dystrophy. The disorder was first described by Folberg et al. in 1988. The name Avellino corneal dystrophy comes from the first four patients in the original study each tracing their family origin to the Italian province of Avellino.
Posterior Polymorphous Corneal Dystrophy (PPCD; sometimes also "Schlichting dystrophy") is a type of corneal dystrophy, characterised by changes in Descemet's membrane and endothelial layer. Symptoms mainly consist of decreased vision due to corneal edema. In some cases they are present from birth, other patients are asymptomatic. Histopathological analysis shows that the cells of endothelium have some characteristics of epithelial cells and have become multilayered. The disease was first described in 1916 by Koeppe as "keratitis bullosa interna".
PPCD type 2 is linked to the mutations in COL8A2, and PPCD type 3 mutations in ZEB1 gene, but the underlying genetic disturbance in PPCD type 1 is unknown.
Non-surgical treatments of FCED may be used to treat symptoms of early disease. Medical management includes topical hypertonic saline, the use of a hairdryer to dehydrate the precorneal tear film, and therapeutic soft contact lenses. Hypertonic saline draws water out of the cornea through osmosis. When using a hairdryer, the patient is instructed to hold it at an arm's length or directed across the face on a cold setting, to dry out the epithelial blisters. This can be done two or three times a day. Definitive treatment, however, (especially with increased corneal edema) is surgical in the form of corneal transplantation. The most common types of surgery for FCED are Descemet's stripping automated endothelial keratoplasty (DSAEK) and Descemet's membrane endothelial keratoplasty (DMEK), which account for over half of corneal transplants in the United States.
More speculative future directions in the treatment of FED include in-vitro expansion of human corneal endothelial cells for transplantation, artificial corneas (keratoprosthesis) and genetic modification. Surgery where the central diseased endothelium is stripped off but not replaced with donor tissue, with subsequent Rho-Associated Kinase (ROCK) inhibition of endothelial cell division may offer a viable medical treatment.
A greater understanding of FED pathophysiology may assist in the future with the development of treatments to prevent progression of disease. Although much progress has been made in the research and treatment of FED, many questions remain to be answered. The exact causes of illness, the prediction of disease progression and delivery of an accurate prognosis, methods of prevention and effective nonsurgical treatment are all the subject of inquiries that necessitate an answer.
Increased attention must be given to research that can address the most basic questions of how the disease develops: what are the biomolecular pathways implicated in disease, and what genetic or environmental factors contribute to its progression? In addition to shaping our understanding of FED, identification of these factors would be essential for the prevention and management of this condition.
Macular corneal dystrophy, also known as Fehr corneal dystrophy named for German ophthalmologist Oskar Fehr (1871-1959), is a rare pathological condition affecting the stroma of cornea. The first signs are usually noticed in the first decade of life, and progress afterwards, with opacities developing in the cornea and attacks of pain. The condition was first described by Arthur Groenouw in 1890.
Corneal transplant is not needed except in very severe and late cases.
Light sensitivity may be overcome by wearing tinted glassess.
The long-term prognosis for patients with Stargardt disease is widely variable although the majority of people will progress to legal blindness.
Stargardt disease has no impact on general health and life expectancy is normal. Some patients, usually those with the late onset form, can maintain excellent visual acuities for extended periods, and are therefore able to perform tasks such as reading or driving.
This slowly progressive disorder is characterized by small cysts in the epithelium of the cornea. Patients with Meesmann corneal dystrophy are intolerant of contact lenses, as these devices directly traumatize the corneal epithelium.
It has been associated with genes KRT3 and KRT12 located on chromosome 12 and 17 respectively.
Thiel–Behnke dystrophy, or Corneal dystrophy of Bowman layer, type II, is a rare form of corneal dystrophy affecting the layer that supports corneal epithelium.
The dystrophy was first described in 1967 and initially suspected to denote the same entity as the earlier-described Reis-Bucklers dystrophy, but following a study in 1995 by Kuchle et al. the two look-alike dystrophies were deemed separate disorders.
Subepithelial mucinous corneal dystrophy (SMCD) is a rare form of corneal dystrophy. It was first described in 1993 by Feder et al. Anterior to Bowman layer, deposits of glycosaminoglycan were detected and identified as chondroitin-4-sulfate and dermatan sulfate.
Keratopathy is common in older people. Keratopathy occurs after cataract surgery, its incidence has decreased since the advent of intraoperative viscoelastic agents that protect the endothelium.
Some cases of it are linked to chromosome 10q24, others stem from a mutation in the TGFBI gene.
Congenital stromal corneal dystrophy (CSCD), also called Witschel dystrophy, is an extremely rare, autosomal dominant form of corneal dystrophy. Only 4 families have been reported to have the disease by 2009. The main features of the disease are numerous opaque flaky or feathery areas of clouding in the stroma that multiply with age and eventually preclude visibility of the endothelium. Strabismus or primary open angle glaucoma was noted in some of the patients. Thickness of the cornea stays the same, Descemet's membrane and endothelium are relatively unaffected, but the fibrills of collagen that constitute stromal lamellae are reduced in diameter and lamellae themselves are packed significantly more tightly.
Macular corneal dystrophy is inherited in autosomal recessive fashion and is thought to be caused by the lack or abnormal configuration of keratan sulfate. Most cases of MCD are caused by mutations in CHST6 gene.
The gene CHST6 is a carbohydrate sulfotransferase encoding an enzyme designated corneal N-acetylglucosamine-6-sulfotransferase. In MCD type I, various mutations lead to inactivation of the enzyme, in MCD type II, inactivation is caused by large deletions and/or replacements in the gene.
Given that episodes tend to occur on awakening and managed by use of good 'wetting agents', approaches to be taken to help prevent episodes include:
- Environmental:
- ensuring that the air is humidified rather than dry, not overheated and without excessive airflow over the face. Also avoiding irritants such as cigarette smoke.
- use of protective glasses especially when gardening or playing with children.
- General personal measures:
- maintaining general hydration levels with adequate fluid intake.
- not sleeping-in late as the cornea tends to dry out the longer the eyelids are closed.
- Pre-bed routine:
- routine use of long-lasting eye ointments applied before going to bed.
- occasional use of the anti-inflammatory eyedrop FML (prescribed by an ophthalmologist or optometrist) before going to bed if the affected eye feels inflamed, dry or gritty
- use of a hyperosmotic (hypertonic) ointment before bed reduces the amount of water in the epithelium, strengthening its structure
- use the pressure patch as mentioned above.
- use surgical tape to keep the eye closed (if Nocturnal Lagophthalmos is a factor)
- Waking options:
- learn to wake with eyes closed and still and keeping artificial tear drops within reach so that they may be squirted under the inner corner of the eyelids if the eyes feel uncomfortable upon waking.
- It has also been suggested that the eyelids should be rubbed gently, or pulled slowly open with your fingers, before trying to open them, or keeping the affected eye closed while "looking" left and right to help spread lubricating tears. If the patient's eyelids feel stuck to the cornea on waking and no intense pain is present, use a fingertip to press firmly on the eyelid to push the eye's natural lubricants onto the affected area. This procedure frees the eyelid from the cornea and prevents tearing of the cornea.