Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Horses may develop pharyngitis, laryngitis, or esophagitis secondary to indwelling nasogastric tube. Other complications include thrombophlebitis, laminitis (which subsequently reduces survival rate), and weight loss. Horses are also at increased risk of hepatic injury.
Survival rates for DPJ are 25–94%. Horses that survive the incident rarely have reoccurrence.
DPJ is most commonly seen in the Southeastern US, although cases have been reported throughout the United States and Canada, as well as sporadically in the United Kingdom and Europe. Horses in the Southeastern US tend to have a more severe form of the disease relative to other locations. Age, breed, and gender appear to have no effect on disease prevalence.
In Germany, 90% of cases of infectious enteritis are caused by four pathogens, Norovirus, Rotavirus, "Campylobacter" and "Salmonella". Other common causes of infectious enteritis include bacteria such as "Shigella" and "E. coli," as well as viruses such as adenovirus, astrovirus and calicivirus. Other less common pathogens include "Bacillus cereus, Clostridium perfringens, Clostridium difficile" and "Staphylococcus aureus".
"Campylobacter jejuni" is one of the most common sources of infectious enteritis, and the most common bacterial pathogen found in 2 year old and smaller children with diarrhoea. It has been linked to consumption of contaminated water and food, most commonly poultry and milk. The disease tends to be less severe in developing countries, due to the constant exposure which people have with the antigen in the environment, leading to early development of antibodies.
Rotavirus is responsible for infecting 140 million people and causing 1 million deaths each year, mostly in children younger than 5 years. This makes it the most common cause of severe childhood diarrhoea and diarrhea-related deaths in the world. It selectively targets mature enterocytes in the small intestine, causing malabsorption, as well as inducing secretion of water. It has also been observed to cause villus ischemia, and increase intestinal motility. The net result of these changes is induced diarrhoea.
Enteritis necroticans is an often fatal illness, caused by β-toxin of "Clostridium perfringens". This causes inflammation and segments of necrosis throughout the gastrointestinal tract. It is most common in developing countries, however has also been documented in post-World War II Germany. Risk factors for enteritis necroticans include decreased trypsin activity, which prevent intestinal degradation of the toxin, and reduced intestinal motility, which increases likelihood of toxin accumulation.
The incidence of colic can be reduced by restricted access to simple carbohydrates including sugars from feeds with excessive molasses, providing clean feed and drinking water, preventing the ingestion of dirt or sand by using an elevated feeding surface, a regular feeding schedule, regular deworming, regular dental care, a regular diet that does not change substantially in content or proportion and prevention of heatstroke. Horses that bolt their feed are at risk of colic, and several management techniques may be used to slow down the rate of feed consumption.
Supplementing with previously mentioned form of pysllium fiber may reduce risk of sand colic if in a high-risk area. Most supplement forms are given one week per month and available wherever equine feed is purchased.
Turnout is thought to reduce the likelihood of colic, although this has not been proven. It is recommended that a horse receive ideally 18 hours of grazing time each day, as in the wild. However, many times this is difficult to manage with competition horses and those that are boarded, as well as for animals that are easy keepers with access to lush pasture and hence at risk of laminitis. Turnout on a dry lot with lower-quality fodder may have similar beneficial effects.
Horses are withheld feed when colic signs are referable to gastrointestinal disease. In long-standing cases, parenteral nutrition may be instituted. Once clinical signs improve, the horse will slowly be re-fed (introduced back to its normal diet), while being carefully monitored for pain.
Ischemic enteritis is uncommon compared to ischemic colitis due to the highly vascularised nature of the small intestine, allowing for sufficient blood flow in most situations. It develops due to circulatory shock of mesenteric vessels in the absence of major vessel occlusion, often associated with an underlying condition such as hypertension, arrhythmia or diabetes. Thus it has been considered to be associated with atherosclerosis. Surgical treatment is usually required due to the likelihood of stenosis or complete occlusion of the small intestine. Ischemic damage can range from mucosal infarction, which is limited only to the mucosa; mural infarction of the mucosa and underlying submucosa; to transmural infarction of the full thickness of the gastrointestinal wall. Mucosal and mural infarcts in and of themselves may not be fatal, however may progress further to a transmural infarct. This has the potential for perforation of the wall, leading to peritonitis.
Specific types of enterocolitis include:
- necrotizing enterocolitis (most common in premature infants)
- pseudomembranous enterocolitis (also called "Pseudomembranous colitis")
Enterocolitis or coloenteritis is an inflammation of the digestive tract, involving enteritis of the small intestine and colitis of the colon. It may be caused by various infections, with bacteria, viruses, fungi, parasites, or other causes. Common clinical manifestations of enterocolitis are frequent diarrheal defecations, with or without nausea, vomiting, abdominal pain, fever, chills, alteration of general condition. General manifestations are given by the dissemination of the infectious agent or its toxins throughout the body, or – most frequently – by significant losses of water and minerals, the consequence of diarrhea and vomiting.
Among the causal agents of acute enterocolitis are:
- bacteria: "Salmonella", "Shigella", "Escherichia coli", "Campylobacter" etc.;
- viruses: enteroviruses, rotaviruses, Norwalk virus, adenoviruses;
- fungi: candidiasis, especially in immunosuppressed patients or who have previously received prolonged antibiotic treatment;
- parasites: "Giardia lamblia" (with high frequency of infestation in the population, but not always with clinical manifestations), "Balantidium coli", "Blastocystis homnis", "Cryptosporidium" (diarrhea in people with immunosuppression), "Entamoeba histolytica" (produces the amebian dysentery, common in tropical areas).
CNE is a necrotizing inflammation of the small bowel (especially the jejunum but also the ileum). Clinical results may vary from mild diarrhea to a life-threatening sequence of severe abdominal pain, vomiting, bloody stool, ulceration of the small intestine with leakage (perforation) into the peritoneal cavity and possible death within a single day due to peritonitis. Many patients exhibit meteorism. Treatment involves suppressing the toxin-producing organisms with antibiotics such as penicillin G or metronidazole. About half of seriously ill patients require surgery for perforation, persistent intestinal obstruction, or failure to respond to the antibiotics. An investigational toxoid vaccine has been used successfully in some developing countries but is not available outside of research.
All the factors collectively causing CNE are generally only present in the hinterlands of New Guinea and parts of Africa, Latin America, and Asia. These factors include protein deprivation (causing inadequate synthesis of trypsin protease (an enzyme), to which the toxin is very sensitive), poor food hygiene, episodic meat feasting, staple diets containing trypsin inhibitors (sweet potatoes), and infection by "Ascaris" parasites which secrete a trypsin inhibitor. In New Guinea (origin of the term "pigbel"), the disease is usually spread through contaminated meat (especially pork) and perhaps by peanuts. (CNE was also diagnosed in post World War II Germany, where it was known as "Darmbrand" or "fire bowels").
An increasing number of people are now surviving cancer, with improved treatments producing cure of the malignancy (cancer survivors). There are now over 14 million such people in the US, and this figure is expected to increase to 18 million by 2022. More than half are survivors of abdominal or pelvic cancers, with about 300,000 people receiving abdominal and pelvic radiation each year. It has been estimated there are 1.6 million people in the US with post-radiation intestinal dysfunction, a greater number than those with inflammatory bowel disease such as Crohn's disease or ulcerative colitis.
New agents have been identified in animal studies that may have effects on intestinal radiation injury. The research approach in humans has been reviewed.
Staphylococcal enteritis may be avoided by using proper hygiene and sanitation with food preparation. This includes thoroughly cooking all meats. If food is to be stored longer than two hours, keep hot foods hot (over 140 °F) and cold foods cold (40 °F or under). Ensure to refrigerate leftovers promptly and store cooked food in a wide, shallow container and refrigerate as soon as possible. Sanitation is very important. Keep kitchens and food-serving areas clean and sanitized. Finally, as most staphylococcal food poisoning are the result of food handling, hand washing is critical. Food handlers should use hand sanitizers with alcohol or thorough hand washing with soap and water.
Tips for hand washing:
1. Wash hands with warm, soapy water before and after handling raw foods.
2. Always wash your hands after using the bathroom, after changing a baby's diaper, after touching pets or other animals, and after sneezing or coughing
3. Properly dress or glove.
"S. aureus" is an enterotoxin producer. Enterotoxins are chromosomally encoded exotoxins that are produced and secreted from several bacterial organisms. It is a heat stable toxin and is resistant to digestive protease. It is the ingestion of the toxin that causes the inflammation and swelling of the intestine.
Enteropathy refers to any pathology of the intestine. Although enteritis specifically refers to an inflammation of the intestine, and is thus a more specific term than "enteropathy", the two phrases are sometimes used interchangeably.
The common routes of transmission for the disease-causing bacteria are fecal-oral, person-to-person sexual contact, ingestion of contaminated food (generally unpasteurized (raw) milk and undercooked or poorly handled poultry), and waterborne (i.e., through contaminated drinking water). Contact with contaminated poultry, livestock, or household pets, especially puppies, can also cause disease.
Animals farmed for meat are the main source of campylobacteriosis. A study published in PLoS Genetics (September 26, 2008) by researchers from Lancashire, England, and Chicago, Illinois, found that 97 percent of campylobacteriosis cases sampled in Lancashire were caused by bacteria typically found in chicken and livestock. In 57 percent of cases, the bacteria could be traced to chicken, and in 35 percent to cattle. Wild animal and environmental sources were accountable for just three percent of disease.
The infectious dose is 1000–10,000 bacteria (although ten to five hundred bacteria can be enough to infect humans). "Campylobacter" species are sensitive to hydrochloric acid in the stomach, and acid reduction treatment can reduce the amount of needed to cause disease.
Exposure to bacteria is often more common during travelling, and therefore campylobacteriosis is a common form of travelers' diarrhea.
Campylobacteriosis is usually self-limited without any mortality (assuming proper hydration is maintained). However, there are several possible complications.
Causing agents may include
- viruses : reovirus (often considered as unique cause), adenoviruses, enteroviruses, rotaviruses, parvoviruses.
- bacteria like Escherichia coli, Proteus mirabilis, Enterococcus faecium, Staphylococcus cohnii, Clostridium perfringens, Bacteroides fragilis and Bacillus licheniformis, often isolated in affected birds.
Reoviruses vaccines are advocated (in dams or in broilers) do not entirely solve the problem.
General hygiene and correct breeding conditions (especially correct brooding temperatures) may be efficient, but the disease often disappears as it had appeared, which makes it difficult to appreciate the effectiveness of control measures.
Specific types of enteropathy include:
- Enteropathy-associated T-cell lymphoma
- Environmental enteropathy
- Eosinophilic enteropathy
- Gluten-sensitive enteropathy (which can progress to coeliac disease)
- Coeliac disease
- Human immunodeficiency virus (HIV) HIV Enteropathy
- Immunodysregulation polyendocrinopathy and enteropathy, X-linked (see FOXP3)
- Protein-losing enteropathy
- Radiation enteropathy
- Tropical enteropathy
If the condition also involves the stomach, it is known as "gastroenteropathy".
In pigs, porcine proliferative enteropathy is a diarrheal disease.
"Y. enterocolitica" infections are sometimes followed by chronic inflammatory diseases such as arthritis, erythema nodosum, and reactive arthritis. This is most likely because of some immune-mediated mechanism.
"Y. enterocolitica" seems to be associated with autoimmune Graves-Basedow thyroiditis.
Whilst indirect evidence exists, direct causative evidence is limited,
and "Y. enterocolitica" is probably not a major cause of this disease, but may contribute to the development of thyroid autoimmunity arising for other reasons in genetically susceptible individuals.
"Y. enterocolitica" infection has also been suggested to not be the cause of autoimmune thyroid disease, but rather is only an associated condition, with both having a shared inherited susceptibility.
More recently, the role for "Y. enterocolitica" has been disputed.
Amphistomiasis or paramphistomiasis (alternatively spelled amphistomosis or paramphistomosis) is a parasitic disease of livestock animals, more commonly of cattle and sheep, and humans caused by immature helminthic flatworms belonging to the order Echinostomida. The term amphistomiasis is used for broader connotation implying the disease inflicted by members of Echinostomida including the family Paramphistomidae/Gastrodiscidae (to be precise, the species "Gastrodiscoides hominis"); whereas paramphistomiasis is restricted to that of the members of the family Paramphistomatidae only. "G. discoides" and "Watsonius watsoni" are responsible for the disease in humans, while most paramphistomes are responsible in livestock animals, and some wild mammals. In livestock industry the disease causes heavy economic backlashes due to poor production of milk, meat and wool.
Yersiniosis is usually self-limiting and does not require treatment. For severe infections (sepsis, focal infection) especially if associated with immunosuppression, the recommended regimen includes doxycycline in combination with an aminoglycoside. Other antibiotics active against "Y. enterocolitica" include trimethoprim-sulfamethoxasole, fluoroquinolones, ceftriaxone, and chloramphenicol. "Y. enterocolitica" is usually resistant to penicillin G, ampicillin, and cephalotin due to beta-lactamase production.
Amphistomiasis in farm and wild mammals is due to infection of paramphistomes, such as the species of "Paramphistomum", "Calicophoron", "Cotylophoron", "Pseudophisthodiscus", etc. These are essentially rumen flukes, of which "Paramphistomum cervi" is the most notorious in terms of prevalence and pathogenicity. Infection occurs through ingestion of contaminated vegetables and raw meat, in which the viable infective metacercaria are deposited from snails, which are the intermediate hosts. The immature flukes are responsible for destroying the mucosal walls of the alimentary tract on their way to growing into adults. It is by this fervent tissue obliteration that the clinical symptoms are manifested. The adult flukes, on the other hand, are quite harmless, as they merely prepare for reproduction.
The zoonotic infection in human is caused by "G. discoides" and "W. watsoni" which are essentially intestinal flukes. The disease due to "G. discoides" is more specifically termed gastrodiscoidiasis. In their natural hosts such as pigs and monkeys, their infection in asymptomatic, but human infection is prevalent, by which they cause serious health problems, characterised by diarrhoea, fever, abdominal pain, colic, and an increased mucous production. In extreme situations such as in Assam, India, a number of mortality among children is attributed to this disease.
This syndrome is predominantly found in young women, but also occurs in children, teenagers and octogenarians.