Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diets high in fruits and vegetables tend to lower the risk of developing fibroids. Fruits, especially citrus, have a greater protective benefit than vegetables. Normal dietary levels of vitamin D is shown to reduce the risk of developing fibroids. No protective benefit has been found with the consumption of folate, whole grains, soy products, or fiber. No association between the consumption of fat, eggs, dairy products has been shown to increase the risk of fibroids.
Many factors can contribute to the loss of uterine muscle tone, including:
- overdistention of the uterus
- multiple gestations
- polyhydramnios
- fetal macrosomia
- prolonged labor
- oxytocin augmentation of labor
- grand multiparity (having given birth 5 or more times)
- precipitous labor (labor lasting less than 3 hours)
- magnesium sulfate treatment of preeclampsia
- chorioamnionitis
- halogenated anesthetics
- uterine leiomyomata
- full bladder
- retained colyledon, placental fragments
- placenta previa
- placental abruption
- constriction ring
- incomplete separation of the placenta
The occurrence of couvelaire uterus can be prevented by prevention of abruptio placentae. This include proper management of hypertensive states of pregnancy; treatment of maternal diseases like diabetes mellitus, and other collagen disease complicating pregnancy; prevention of trauma during pregnancy; mothers should also avoid smoking or consumption of alcohol during pregnancy.
AS has a reported incidence of 25% of D&Cs performed 1–4 weeks post-partum, up to 30.9% of D&Cs performed for missed miscarriages and 6.4% of D&Cs performed for incomplete miscarriages. In another study, 40% of patients who underwent repeated D&C for retained products of conception after missed miscarriage or retained placenta developed AS.
In the case of missed miscarriages, the time period between fetal demise and curettage may increase the likelihood of adhesion formation due to fibroblastic activity of the remaining tissue.
The risk of AS also increases with the number of procedures: one study estimated the risk to be 16% after one D&C and 32% after 3 or more D&Cs. However, a single curettage often underlies the condition.
In an attempts to estimate the prevalence of AS in the general population, it was found in 1.5% of women undergoing hysterosalpingography HSG, and between 5 and 39% of women with recurrent miscarriage.
After miscarriage, a review estimated the prevalence of AS to be approximately 20% (95% confidence interval: 13% to 28%).
Vaginal bleeding occurs during 15-25% of first trimester pregnancies. Of these, half go on to miscarry and half bring the fetus to term. There are a number of causes including rupture of a small vein on the outer rim of the placenta. It can also herald a miscarriage or ectopic pregnancy, which is why urgent ultrasound is required to separate the two causes. Bleeding in early pregnancy may be a sign of a threatened or incomplete miscarriage.
In the second or third trimester a placenta previa (a placenta partially or completely overlying the cervix) may bleed quite severely. Placental abruption is often associated with uterine bleeding as well as uterine pain.
Interstitial pregnancies account for 2–4% of all tubal pregnancies, or for 1 in 2,500 to 5,000 live births. About one in fifty women with an interstitial pregnancy dies. Patients with an interstitial pregnancies have a 7-times higher mortality than those with ectopics in general. With the growing use of assisted reproductive technologies, the incidence of interstitial pregnancy is rising.
True cervical pregnancies tend to abort; if, however, the pregnancy is located higher in the canal and the placenta finds support in the uterine cavity it can go past the first trimester. With the placenta being implanted abnormally extensive vaginal bleeding can be expected at time of delivery and placental removal. While early cervical pregnancies may abort spontaneously or can be managed with excision, D&C, suturing, electrocautery, and tamponading, by medication such as methotrexate, and/or by uterine artery embolization, a more advanced pregnancy may require a hysterectomy to control bleeding. The more advanced the pregnancy the higher the risk for a major bleeding necessitating a hysterectomy.
On a very rare occasion, a cervical pregnancy results in the birth of a live baby, typically the pregnancy is in the upper part of the cervical canal and manages to extend into the lower part of the uterine cavity.
A cervical pregnancy can develop together with a normal intrauterine pregnancy; such a heterotopic pregnancy will call for expert management as to not to endanger the intrauterine pregnancy.
Endometrial atrophy, uterine fibroids, and endometrial cancer are common causes of postmenopausal vaginal bleeding.
A uterine scar from a previous cesarean section is the most common risk factor. (In one review, 52% had previous cesarean scars.) Other forms of uterine surgery that result in full-thickness incisions (such as a myomectomy), dysfunctional labor, labor augmentation by oxytocin or prostaglandins, and high parity may also set the stage for uterine rupture. In 2006, an extremely rare case of uterine rupture in a first pregnancy with no risk factors was reported.
Some risk factors associated with the development of uterine fibroids are modifiable.
Fibroids are more common in obese women. Fibroids are dependent on estrogen and progesterone to grow and therefore relevant only during the reproductive years.
The extent of adhesion formation is critical. Mild to moderate adhesions can usually be treated with success. Extensive obliteration of the uterine cavity or fallopian tube openings (ostia) and deep endometrial or myometrial trauma may require several surgical interventions and/or hormone therapy or even be uncorrectable. If the uterine cavity is adhesion free but the ostia remain obliterated, IVF remains an option. If the uterus has been irreparably damaged, surrogacy or adoption may be the only options.
Depending on the degree of severity, AS may result in infertility, repeated miscarriages, pain from trapped blood, and future obstetric complications If left untreated, the obstruction of menstrual flow resulting from adhesions can lead to endometriosis in some cases.
Patients who carry a pregnancy even after treatment of IUA may have an increased risk of having abnormal placentation including placenta accreta where the placenta invades the uterus more deeply, leading to complications in placental separation after delivery. Premature delivery, second-trimester pregnancy loss, and uterine rupture are other reported complications. They may also develop incompetent cervix where the cervix can no longer support the growing weight of the fetus, the pressure causes the placenta to rupture and the mother goes into premature labour. Cerclage is a surgical stitch which helps support the cervix if needed.
Pregnancy and live birth rate has been reported to be related to the initial severity of the adhesions with 93, 78, and 57% pregnancies achieved after treatment of mild, moderate and severe adhesions, respectively and resulting in 81, 66, and 32% live birth rates, respectively. The overall pregnancy rate after adhesiolysis was 60% and the live birth rate was 38.9% according to one study.
Age is another factor contributing to fertility outcomes after treatment of AS. For women under 35 years of age treated for severe adhesions, pregnancy rates were 66.6% compared to 23.5% in women older than 35.
The fetus may be compromised if there is prolonged delivery because of the non-contractile uterus; severe bleeding may cause hypovolemic shock in the mother.
Emergency exploratory laparotomy with cesarean delivery accompanied by fluid and blood transfusion are indicated for the management of uterine rupture. Depending on the nature of the rupture and the condition of the patient, the uterus may be either repaired or removed (cesarean hysterectomy). Delay in management places both mother and child at significant risk.
10% of cases occur in women who are ovulating, but progesterone secretion is prolonged because estrogen levels are low. This causes irregular shedding of the uterine lining and break-through bleeding. Some evidence has associated Ovulatory DUB with more fragile blood vessels in the uterus.
It may represent a possible endocrine dysfunction, resulting in menorrhagia or metrorrhagia.
Mid-cycle bleeding may indicate a transient estrogen decline, while late-cycle bleeding may indicate progesterone deficiency.
Adenomyosis itself can cause infertility issues, however, fertility can be improved if the adenomyosis has resolved following hormone therapies like levonorgestrel therapy. The discontinuation of medication or removal of IUD can be timed to be coordinated with fertility treatments. There has also been one report of a successful pregnancy and healthy birth following high-frequency ultrasound ablation of adenomyosis.
Preterm labour and premature rupture of membranes both occur more frequently in women with adenomyosis.
In sub-fertile women who received in-vitro fertilization (IVF), women with adenomyosis were less likely to become pregnant and subsequently more likely to experience a miscarriage. Given this, it is encouraged to screen women for adenomyosis by TVUS or MRI before starting assisted reproduction treatments (ART).
The following have been identified as risk factors for placenta previa:
- Previous placenta previa (recurrence rate 4–8%), caesarean delivery, myomectomy or endometrium damage caused by D&C.
- Women who are younger than 20 are at higher risk and women older than 35 are at increasing risk as they get older.
- Alcohol use during pregnancy was previous listed as a risk factor, but is discredited by this article.
- Women who have had previous pregnancies ( multiparity ), especially a large number of closely spaced pregnancies, are at higher risk due to uterine damage.
- Smoking during pregnancy; cocaine use during pregnancy
- Women with a large placentae from twins or erythroblastosis are at higher risk.
- Race is a controversial risk factor, with some studies finding that people from Asia and Africa are at higher risk and others finding no difference.
- Placental pathology (Vellamentous insertion, succinturiate lobes, bipartite i.e. bilobed placenta etc.)
- Baby is in an unusual position: breech (buttocks first) or transverse (lying horizontally across the womb).
Placenta previa is itself a risk factor of placenta accreta.
Patients with an ectopic pregnancy are generally at higher risk for a recurrence, however, there are no specific data for patients with an interstitial pregnancy. When a new pregnancy is diagnosed it is important to monitor the pregnancy by transvaginal sonography to assure that is it properly located, and that the surgically repaired area remains intact. Cesarean delivery is recommended to avoid uterine rupture during labor.
Adenomyosis is a benign but often progressing condition. It is advocated that adenomyosis poses no increased risk for cancer development. However, both entities could coexist and the endometrial tissue within the myometrium could harbor endometrioid adenocarcinoma, with potentially deep myometrial invasion. As the condition is estrogen-dependent, menopause presents a natural cure. Ultrasound features of adenomyosis will still be present after menopause. People with adenomyosis are also more likely to have uterine fibroids or endometriosis.
Placenta previa occurs approximately one of every 200 births. It has been suggested that incidence of placenta previa is increasing due to increased rate of Caesarian section.
Perinatal mortality rate of placenta previa is 3-4 times higher than normal pregnancies.
An important risk factor for placenta accreta is placenta previa in the presence of a uterine scar. Placenta previa is an independent risk factor for placenta accreta. Additional reported risk factors for placenta accreta include maternal age and multiparity, other prior uterine surgery, prior uterine curettage, uterine irradiation, endometrial ablation, Asherman syndrome, uterine leiomyomata, uterine anomalies, hypertensive disorders of pregnancy, and smoking.
The condition is increased in incidence by the presence of scar tissue i.e. Asherman's syndrome usually from past uterine surgery, especially from a past dilation and curettage, (which is used for many indications including miscarriage, termination, and postpartum hemorrhage), myomectomy, or caesarean section. A thin decidua can also be a contributing factor to such trophoblastic invasion. Some studies suggest that the rate of incidence is higher when the fetus is female. Other risk factors include low-lying placenta, anterior placenta, congenital or acquired uterine defects (such as uterine septa), leiomyoma, ectopic implantation of placenta (including cornual pregnancy).
Pregnant women above 35 years of age who have had a Caesarian section and now have a placenta previa overlying the uterine scar have a 40% chance of placenta accreta.
Because pregnancy is outside the uterus, abdominal pregnancy serves as a model of human male pregnancy or for females who lack a uterus, although such pregnancy would be dangerous.
Cases of combined simultaneous abdominal and intrauterine pregnancy have been reported.
The incidence has been reported to be about 1:1,000 to 1: 16,000 pregnancies.
Pregnancies involving the isthmus - the segment of the uterus between the cervix and the fundus - are more common than true cervical pregnancies. While in many situations the cause of the abnormal implantation remains unclear, there is evidence to link the development of cervical pregnancy to uterine instrumentation, specifically repeated D&Cs (dilatation and curettage). Cervical pregnancies are to be distinguished from pregnancies that start from an implantation in a scar of a previous cesarean section, so-called "scar pregnancies".
Females that have received estradiol as a mismating shot (abortifacient) in diestrus are at risk for more severe disease because estrogen increases the number of progesterone receptors in the endometrium. 25 percent of females receiving estradiol in diestrus develop pyometra. Pyometra is less common in female cats because progesterone is only released by the ovaries after mating. Also in cats, the risk of developing the disease differ depending on breed.
In the United States, uterus didelphys is reported to occur in 0.1–0.5% of women. It is difficult to know the exact occurrence of this anomaly, as it may go undetected in the absence of medical and reproductive complications.
The risk of developing pyometra differs between dog breeds. Pyometra is a result of hormonal and structural changes in the uterus lining. This can happen at "any" age, whether she has bred or not, and whether it is her 1st or 10th heat (although it becomes more common as the dog gets older). The main risk period for a female is for eight weeks after her peak standing heat (or estrous cycle) has ended. Normally during this period, the cervix, which was open during her heat, begins to close, and the inner lining begins to adapt back to normal. However, cystic hyperplasia of the endometrium (inner lining of the uterus) – known as cystic endometrial hyperplasia (CEH) – may occur at this time for some animals, as an inappropriate response to progesterone.
Under these circumstances, bacteria (especially "E. coli") that have migrated from the vagina into the uterus find the environment favorable to growth, especially since progesterone also causes mucus secretion, closes the cervix (preventing uterine drainage), and decreases uterine contractility. The condition of the cervix is a major factor in the severity of the condition.