Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This accounts for around 10-15% of all cases of anovulation. The ovaries can stop working in about 5% of cases. This may be because the ovaries do not contain eggs. However, a complete blockage of the ovaries is rarely a cause of infertility. Blocked ovaries can start functioning again without a clear medical explanation. In some cases, the egg may have matured properly, but the follicle may have failed to burst (or the follicle may have burst without releasing the egg). This is called luteinised unruptured follicle syndrome (LUFS). Physical damage to the ovaries, or ovaries with multiple cysts, may affect their ability to function. This is called ovarian . Patients who are suffering from Stein-Leventhal syndrome (also referred to as polycystic ovary syndrome, or PCOS) can also suffer from anovulation. Up to 90% of cases of anovulation are caused by PCOS; this syndrome is usually hereditary.
Weight loss or anorexia can also cause hormonal imbalance, leading to irregular ovulation (dysovulation). It is possible that this mechanism evolved to protect the mother’s health. A pregnancy where the mother is weak could pose a risk to the baby’s and mother’s health. On the other hand, excess weight can also create ovarian dysfunctions. Dr Barbieri of Harvard Medical School has indicated that cases of anovulation are quite frequent in women with a BMI (body mass index) over 27 /. Unfortunately, not only does excess weight have a negative impact on ovulation itself, but also on treatment efficacy and outcomes of ART (assisted reproductive technique).
Factors that can cause male as well as female infertility are:
- DNA damage
- DNA damage reduces fertility in female ovocytes, as caused by smoking, other xenobiotic DNA damaging agents (such as radiation or chemotherapy) or accumulation of the oxidative DNA damage 8-hydroxy-deoxyguanosine
- DNA damage reduces fertility in male sperm, as caused by oxidative DNA damage, smoking, other xenobiotic DNA damaging agents (such as drugs or chemotherapy) or other DNA damaging agents including reactive oxygen species, fever or high testicular temperature
- General factors
- Diabetes mellitus, thyroid disorders, undiagnosed and untreated coeliac disease, adrenal disease
- Hypothalamic-pituitary factors
- Hyperprolactinemia
- Hypopituitarism
- The presence of anti-thyroid antibodies is associated with an increased risk of unexplained subfertility with an odds ratio of 1.5 and 95% confidence interval of 1.1–2.0.
- Environmental factors
- Toxins such as glues, volatile organic solvents or silicones, physical agents, chemical dusts, and pesticides. Tobacco smokers are 60% more likely to be infertile than non-smokers.
German scientists have reported that a virus called Adeno-associated virus might have a role in male infertility, though it is otherwise not harmful. Other diseases such as chlamydia, and gonorrhea can also cause infertility, due to internal scarring (fallopian tube obstruction).
For most women, alteration of menstrual periods is the principal indication of chronic anovulation. Ovulatory menstrual periods tend to be regular and predictable in terms of cycle length, duration and heaviness of bleeding, and other symptoms. Ovulatory periods are often accompanied by midcycle symptoms such as mittelschmerz or premenstrual symptoms. In contrast, anovulation usually manifests itself as irregularity of menstrual periods, that is, unpredictable variability of intervals, duration, or bleeding. Anovulation can also cause cessation of periods (secondary amenorrhea) or excessive bleeding (dysfunctional uterine bleeding). Mittelschmerz and premenstrual symptoms tend to be absent or reduced when a woman is anovulatory.
Prevalence of infertility varies depending on the definition, i.e. on the time span involved in the failure to conceive.
- Infertility rates have increased by 4% since the 1980s, mostly from problems with fecundity due to an increase in age.
- Fertility problems affect one in seven couples in the UK. Most couples (about 84%) who have regular sexual intercourse (that is, every two to three days) and who do not use contraception get pregnant within a year. About 92 out of 100 couples who are trying to get pregnant do so within two years.
- Women become less fertile as they get older. For women aged 35, about 94% who have regular unprotected sexual intercourse get pregnant after three years of trying. For women aged 38, however, only about 77%. The effect of age upon men's fertility is less clear.
- In people going forward for IVF in the UK, roughly half of fertility problems with a diagnosed cause are due to problems with the man, and about half due to problems with the woman. However, about one in five cases of infertility has no clear diagnosed cause.
- In Britain, male factor infertility accounts for 25% of infertile couples, while 25% remain unexplained. 50% are female causes with 25% being due to anovulation and 25% tubal problems/other.
- In Sweden, approximately 10% of couples wanting children are infertile. In approximately one third of these cases the man is the factor, in one third the woman is the factor, and in the remaining third the infertility is a product of factors on both parts.
The prevalence of PCOS depends on the choice of diagnostic criteria. The World Health Organization estimates that it affects 116 million women worldwide as of 2010 (3.4% of women). One community-based prevalence study using the Rotterdam criteria found that about 18% of women had PCOS, and that 70% of them were previously undiagnosed.
Ultrasonographic findings of polycystic ovaries are found in 8–25% of normal women. 14% women on oral contraceptives are found to have polycystic ovaries. Ovarian cysts are also a common side effect of intrauterine devices (IUDs).
A diagnosis of PCOS suggests an increased risk of the following:
- Endometrial hyperplasia and endometrial cancer (cancer of the uterine lining) are possible, due to overaccumulation of uterine lining, and also lack of progesterone resulting in prolonged stimulation of uterine cells by estrogen. It is not clear whether this risk is directly due to the syndrome or from the associated obesity, hyperinsulinemia, and hyperandrogenism.
- Insulin resistance/Type II diabetes. A review published in 2010 concluded that women with PCOS have an elevated prevalence of insulin resistance and type II diabetes, even when controlling for body mass index (BMI). PCOS also makes a woman, particularly if obese, prone to gestational diabetes.
- High blood pressure, in particular if obese or during pregnancy
- Depression and anxiety
- Dyslipidemia – disorders of lipid metabolism — cholesterol and triglycerides. Women with PCOS show a decreased removal of atherosclerosis-inducing remnants, seemingly independent of insulin resistance/Type II diabetes.
- Cardiovascular disease, with a meta-analysis estimating a 2-fold risk of arterial disease for women with PCOS relative to women without PCOS, independent of BMI.
- Strokes
- Weight gain
- Miscarriage
- Sleep apnea, particularly if obesity is present
- Non-alcoholic fatty liver disease, again particularly if obesity is present
- Acanthosis nigricans (patches of darkened skin under the arms, in the groin area, on the back of the neck)
- Autoimmune thyroiditis
Early diagnosis and treatment may reduce the risk of some of these, such as type 2 diabetes and heart disease.
The risk of ovarian cancer and breast cancer is not significantly increased overall.
While hyperandrogenism in women is caused by external factors, it can also appear from natural causes.
Disorders of ovulation include oligoovulation and anovulation:
- Oligoovulation is infrequent or irregular ovulation (usually defined as cycles of ≥36 days or <8 cycles a year)
- Anovulation is absence of ovulation when it would be normally expected (in a post-menarchal, premenopausal woman). Anovulation usually manifests itself as irregularity of menstrual periods, that is, unpredictable variability of intervals, duration, or bleeding. Anovulation can also cause cessation of periods (secondary amenorrhea) or excessive bleeding (dysfunctional uterine bleeding).
A menstrual disorder is an abnormal condition in a woman's menstrual cycle.
Because hyperandrogenism can appear as a symptom of numerous different genetic and medical conditions, it is difficult to make a general statement on whether hyperandrogenic symptoms can be passed from parent to offspring. However, a collection of the conditions with hyperandrogenic symptoms, including polycystic ovary syndrome, have been observed as hereditary in certain cases. One potential cause of polycystic ovary syndrome is maternal hyperandrogenism, where the hormonal irregularities of the mother can affect the development of the child during gestation, resulting in the passing of polycystic ovary syndrome from mother to child.
Menorrhagia is a menstrual period with excessively heavy flow and falls under the larger category of abnormal uterine bleeding (AUB).
Abnormal uterine bleeding can be caused by structural abnormalities in the reproductive tract, anovulation, bleeding disorders, hormone issues (such as hypothyroidism) or cancer of the reproductive tract. Initial evaluation aims at figuring out pregnancy status, menopausal status, and the source of bleeding.
Treatment depends on the cause, severity, and interference with quality of life. Initial treatment often involve contraceptive pills. Surgery can be an effective second line treatment for those women whose symptoms are not well-controlled. Approximately 53 in 1000 women are affected by AUB.
Where an underlying cause can be identified, treatment may be directed at this. Clearly heavy periods at menarche and menopause may settle spontaneously (the menarche being the start and menopause being the cessation of periods).
If the degree of bleeding is mild, all that may be sought by the woman is the reassurance that there is no sinister underlying cause. If anemia occurs due to bleeding then iron tablets may be used to help restore normal hemoglobin levels.
The condition is often treated with hormones, particularly as abnormal uterine bleeding commonly occurs in the early and late menstrual years when contraception is also sought. Usually, oral combined contraceptive or progesterone only pills may be taken for a few months, but for longer-term treatment the alternatives of injected Depo Provera or the more recent progesterone releasing IntraUterine System (IUS) may be used. Fibroids may respond to hormonal treatment, and if they do not, then surgical removal may be required.
Tranexamic acid tablets that may also reduce loss by up to 50%. This may be combined with hormonal medication previously mentioned.
Anti-inflammatory medication like NSAIDs may also be used. NSAIDs are the first-line medications in ovulatory menorrhagia, resulting in an average reduction of 20-46% in menstrual blood flow. For this purpose, NSAIDs are ingested for only 5 days of the menstrual cycle, limiting their most common adverse effect of dyspepsia.
A definitive treatment for menorrhagia is to perform hysterectomy (removal of the uterus). The risks of the procedure have been reduced with measures to reduce the risk of deep vein thrombosis after surgery, and the switch from the front abdominal to vaginal approach greatly minimizing the discomfort and recuperation time for the patient; however extensive fibroids may make the womb too large for removal by the vaginal approach. Small fibroids may be dealt with by local removal (myomectomy). A further surgical technique is endometrial ablation (destruction) by the use of applied heat (thermoablation).
In the UK the use of hysterectomy for menorrhagia has been almost halved between 1989 and 2003. This has a number of causes: better medical management, endometrial ablation and particularly the introduction of IUS which may be inserted in the community and avoid the need for specialist referral; in one study up to 64% of women cancelled surgery.
Nearly all mammals display sex-dimorphic reproductive and sexual behavior (e.g., lordosis and mounting in rodents). Much research has made it clear that prenatal and early postnatal androgens play a role in the differentiation of most mammalian brains. Experimental manipulation of androgen levels in utero or shortly after birth can alter adult reproductive behavior.
Girls and women with CAH constitute the majority of genetic females with normal internal reproductive hormones who have been exposed to male levels of testosterone throughout their prenatal lives. Milder degrees of continuing androgen exposure continue throughout childhood and adolescence as a consequence of the imperfections of current glucocorticoid treatment for CAH. The psychosexual development of these girls and women has been analyzed as evidence of the role of androgens in human sex-dimorphic behaviors.
Girls with CAH have repeatedly been reported to spend more time with "sex-atypical" toys and "rough-and-tumble" play than unaffected sisters. These differences continue into adolescent, as expressed in social behaviors, leisure activities, and career interests. Interest in babies and becoming mothers is significantly lower by most measures.
Cognitive effects are less clear, and reports have been contradictory. Two studies reported spatial abilities above the average for sisters and for girls in general. Other evidence in males with and without androgen deficiencies suggests that androgens may play a role in these aptitudes.
However, gender identity of girls and women with CAH is nearly always unequivocally female. Sexual orientation is more mixed, though the majority are heterosexual. In one study, 27% of women with CAH were rated as bisexual in their orientations. Abnormalities of body image due to the effects of the disease likely play a role in the sexual development of these women, and one cannot conclude that the androgens are the major determinant of their sexuality.
Infertility observed in adult males with congenital adrenal hyperplasia (CAH) has been associated with testicular adrenal rest tumors (TART) that may originate during childhood. TART in prepubertal males with classic CAH could be found during childhood (20%). Martinez-Aguayo et al. reported differences in markers of gonadal function in a subgroup of patients, especially in those with inadequate control.
Anovulation is a common cause of gynecological hemorrhage. Under the influence of estrogen the endometrium (uterine lining) is stimulated and eventually such lining will be shed off (estrogen breakthrough bleeding). The anovulation chapter discusses its multiple possible causes. Longstanding anovulation can also lead to endometrial hyperplasia and facilitate the development of endometrial cancer.
Women with a bleeding disorder may be prone to more excessive bleeding. A hematologic work-up should discover the cause.
Leydig cell hypoplasia is caused by genetic mutations in "LHCGR", a gene which encodes the LH/hCG receptor. LH normally acts through the LH/hCG receptor to stimulate the growth of Leydig cells in the testicles and the production of androgens such as testosterone and dihydrotestosterone (DHT) by these cells. In Leydig cell hypoplasia however, there is a reduced capacity for the LH/hCG receptor to respond to LH. This results in hypoplasia or absence of Leydig cells, testicular atrophy, and lower than normal androgen levels. In the most severe form of the condition in which there is a complete lack of response of the Leydig cells to LH, androgen production by the testicles is virtually negligible and secondary sexual characteristics entirely fail to develop at puberty.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
Most XY children are so undervirilized that they are raised as girls. The testes are uniformly nonfunctional and undescended; they are removed when the diagnosis is made due to the risk of cancer development in these tissues.
The incidence varies geographically. In the United States, congenital adrenal hyperplasia is particularly common in Native Americans and Yupik Eskimos (incidence ). Among American Caucasians, the incidence is approximately ).
Lipoid CAH is quite rare in European and North American populations. Most cases occur in Japan and Korea (where the incidence is 1 in 300,000 births) and Palestinian Arabs. Despite autosomal inheritance, there has been an unexplained preponderance of genetic females in reported cases.
Congenital adrenal hyperplasia (CAH) are any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of mineralocorticoids, glucocorticoids or sex steroids from cholesterol by the adrenal glands (steroidogenesis).
Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.