Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Herbicide applications aimed to reduce ryegrass population have been successful in reducing the risk of ARGT but have undesirable effects such as rapid reduction in pasture productivity and increase in ryegrass herbicide resistance.
A recently released biological control agent, the twist fungus, has been demonstrated to be effective in reducing the risk ARGT without the need of controlling ryegrass. The first use of the twist fungus inoculum was in 1997.
ARGT was first recorded in vicinity of Black Springs, South Australia, in the 1950s and then near Gnowangerup, Western Australia, in the 1960s. The disease has spread rapidly and approximately 40,000 to 60,000 square kilometres of farmland in Western Australia, and similar areas in South Australia are now infested by the ARGT-causing organisms. Most ARGT-related livestock losses occur during October to January, but losses have been recorded as late as April.
Recovery usually occurs when the animal is removed from the contaminated pasture. The chief danger to stock at this stage is caused by their lack of coordination, which may result in accidental death by falling in awkward places such as ditches and ponds.
The International Agency for Research on Cancer (IARC), found that organophosphates may possibly increased cancer risk. Tetrachlorvinphos and parathion were classified as "possibly carcinogenic", malathion, and diazinon.
OP pesticide exposure occurs through inhalation, ingestion and dermal contact. Because OP pesticides disintegrate quickly in air and light, they have been considered relatively safe to consumers. However, OP residues linger on fruits and vegetables. Certain OP pesticides have been banned for use on some crops, for example methyl parathion is banned from use on some crops while permitted on others.
The Environmental Working Group has developed lists for concerned consumers, identifying crops with the highest pesticide residue quantities and the lowest. The "Dirty Dozen" crops are updated yearly and in 2012 included apples, celery, sweet bell peppers, peaches, strawberries, imported nectarines, grapes, spinach, lettuce, cucumbers, domestic blueberries and potatoes. Forty-five fruits and vegetables are listed by the Environmental Working Group as being regularly found with pesticide residue associated with OPs.
The disease is particularly prevalent in New Zealand. It may be prevented by avoiding grazing pastures containing perennial ryegrass, or seeding pastures with resistant strains of ryegrass. Horses are particularly prone to this disease because of their habit of biting close to the ground, and sparse pastures may encourage heavier grazing with greater intake of infected material. Supplementary feeding may help, but hay from infected pasture should not be used because it may contain further toxins.
Cows and horses as well as pet animals are also susceptible to the effects of lead toxicity. Sources of lead exposure in pets can be the same as those that present health threats to humans sharing the environment, such as paint and blinds, and there is sometimes lead in toys made for pets. Lead poisoning in a pet dog may indicate that children in the same household are at increased risk for elevated lead levels.
Since lead has been used widely for centuries, the effects of exposure are worldwide. Environmental lead is ubiquitous, and everyone has some measurable blood lead level. Atmospheric lead pollution increased dramatically beginning in the 1950s as a result of the widespread use of leaded gasoline. Lead is one of the largest environmental medicine problems in terms of numbers of people exposed and the public health toll it takes. Lead exposure accounts for about 0.2% of all deaths and 0.6% of disability adjusted life years globally.
Although regulation reducing lead in products has greatly reduced exposure in the developed world since the 1970s, lead is still allowed in products in many developing countries. In all countries that have banned leaded gasoline, average blood lead levels have fallen sharply. However, some developing countries still allow leaded gasoline, which is the primary source of lead exposure in most developing countries. Beyond exposure from gasoline, the frequent use of pesticides in developing countries adds a risk of lead exposure and subsequent poisoning. Poor children in developing countries are at especially high risk for lead poisoning. Of North American children, 7% have blood lead levels above 10 μg/dL, whereas among Central and South American children, the percentage is 33 to 34%. About one fifth of the world's disease burden from lead poisoning occurs in the Western Pacific, and another fifth is in Southeast Asia.
In developed countries, people with low levels of education living in poorer areas are most at risk for elevated lead. In the US, the groups most at risk for lead exposure are the impoverished, city-dwellers, and immigrants. African-American children and those living in old housing have also been found to be at elevated risk for high blood lead levels in the US. Low-income people often live in old housing with lead paint, which may begin to peel, exposing residents to high levels of lead-containing dust.
Risk factors for elevated lead exposure include alcohol consumption and smoking (possibly because of contamination of tobacco leaves with lead-containing pesticides). Adults with certain risk factors might be more susceptible to toxicity; these include calcium and iron deficiencies, old age, disease of organs targeted by lead (e.g. the brain, the kidneys), and possibly genetic susceptibility.
Differences in vulnerability to lead-induced neurological damage between males and females have also been found, but some studies have found males to be at greater risk, while others have found females to be.
In adults, blood lead levels steadily increase with increasing age. In adults of all ages, men have higher blood lead levels than women do. Children are more sensitive to elevated blood lead levels than adults are. Children may also have a higher intake of lead than adults; they breathe faster and may be more likely to have contact with and ingest soil. Children of ages one to three tend to have the highest blood lead levels, possibly because at that age they begin to walk and explore their environment, and they use their mouths in their exploration. Blood levels usually peak at about 18–24 months old. In many countries including the US, household paint and dust are the major route of exposure in children.
The disruption of olfaction and potential effects to survival and reproductive success at environmentally-relevant concentrations metals, pesticides or surfactants have implications for fish and salmon recovery because these are commonly found in western United States streams. Conventional, acute and chronic toxicity testing do not explicitly address nervous system function and underestimate thresholds for toxicity in salmonids. Since these effects are not explicitly looked at during studies they oftentimes can go unnoticed. Olfactory toxicity occurring at environmentally relevant concentrations can induce reduction to food odor attraction and predator scent or alarm response pheromones can cause major problems with survivorship. Olfactory toxicity can also affect the ability of anadromous fish to find their natal stream causing them to stray to other streams.
Those routes include contaminated air, water, soil, and food, and also, for birds ingestion of grit (lead shots, lead bullets).ingestion of paints,materials that are left out from the factories like batteries etc.
Outcome is related to the extent and duration of lead exposure. Effects of lead on the physiology of the kidneys and blood are generally reversible; its effects on the central nervous system are not. While peripheral effects in adults often go away when lead exposure ceases, evidence suggests that most of lead's effects on a child's central nervous system are irreversible. Children with lead poisoning may thus have adverse health, cognitive, and behavioral effects that follow them into adulthood.
Heavy metals "can bind to vital cellular components, such as structural proteins, enzymes, and nucleic acids, and interfere with their functioning". Symptoms and effects can vary according to the metal or metal compound, and the dose involved. Broadly, long-term exposure to toxic heavy metals can have carcinogenic, central and peripheral nervous system and circulatory effects. For humans, typical presentations associated with exposure to any of the "classical" toxic heavy metals, or chromium (another toxic heavy metal) or arsenic (a metalloid), are shown in the table.
Various pesticides such as rodenticides may cause secondary poisoning. Some pesticides require multiple feedings spanning several days; this increases the time a target organism continues to move after ingestion, raising the risk of secondary poisoning of a predator.
Tin has no known natural biological role in living organisms. It is not easily absorbed by animals and humans. The low toxicity is relevant to the widespread use of tin in dinnerware and canned food. Nausea, vomiting and diarrhea have been reported after ingesting canned food containing 200 mg/kg of tin. This observation led, for example, the Food Standards Agency in the UK to propose upper limits of 200 mg/kg. A study showed that 99.5% of the controlled food cans contain tin in an amount below that level. However un-lacquered tin cans with food of a low pH for example fruits and pickled vegetables can contain elevated concentrations of tin.
The toxic effects of tin compounds is based on the interference with the iron and copper metabolism. For example, it affects heme and cytochrome P450, and decreases their effectiveness.
Organotin compounds can be very toxic. "Tri-"n"-alkyltins" are phytotoxic and, depending on the organic groups, can be powerful bactericides and fungicides. Other triorganotins are used as miticides and acaricides.
Tributyltin (TBT) was extensively used in marine antifouling paints, until discontinued for leisure craft due to concerns over longer term marine toxicity in high traffic areas such as marinas with large numbers of static boats.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
Avoidance behavior exhibited by fish is species specific, Whitefish ("C. clupeaformis") showed a preference toward SLS at a concentration of 0.1 mg/L while rainbow trout ("Oncorhynchus mykiss") and common carp ("Cyprinus carpio") showed an avoidance response at a concentration of 0.01 ug/L. Past studies are difficult to compare due to differences in test and exposure conditions.
Once kidney failure has developed in dogs and cats, the outcome is poor.
"Argemone mexicana" (family Papaveraceae), a native of West Indies and naturalized in India, is known as “Shailkanta” in Bengal and “Bharbhanda” in Uttar Pradesh. It is also popularly known as “Pivladhatura” or “Satyanashi”, meaning devastating. The plant grows wildly in mustard and other fields. Its seeds are black in colour and are similar to the dark coloured mustards seeds ("Brassica juncea") in shape and size. Adulteration of argemone seeds in light yellow colored mustard seeds ("Brassica compestris") can easily be detected, but these seeds are rather difficult to visualize when mixed with dark coloured mustard seeds.
Argemone seeds yield approximately 35% oil. Alkaloid content in argemone oil varies from 0.44% to 0.50%. Argemone seeds find use as a substitute because of the easy availability, low cost and their complete miscibility of their oil with mustard oil.
Tin poisoning refers to the toxic effects of tin and its compounds. Cases of poisoning from tin metal, its oxides, and its salts are "almost unknown"; on the other hand certain organotin compounds are almost as toxic as cyanide.
Copper toxicity, also called copperiedus, refers to the consequences of an excess of copper in the body. Copperiedus can occur from eating acid foods cooked in uncoated copper cookware, or from exposure to excess copper in drinking water, as a side-effect of estrogen birth control pills, or other environmental sources. It can also result from the genetic condition Wilson's disease.
Secondary poisoning is poisoning that can result when one organism comes into contact with or ingests another organism that has poison in its system. It typically occurs when a predator eats an animal, such as a mouse, rat, or insect, that has previously been poisoned by a commercial pesticide. If the level of toxicity in the prey animal is sufficiently high, it will harm the predator.
Mammals susceptible to secondary poisoning include humans, with infants and small children being the most susceptible. Pets such as cats and dogs, as well as wild birds, also face significant risk of secondary poisoning.
Arsenic poisoning is a medical condition caused by elevated levels of arsenic in the body. The dominant basis of arsenic poisoning is from ground water that naturally contains high concentrations of arsenic. A 2007 study found that over 137 million people in more than 70 countries are probably affected by arsenic poisoning from drinking water.
Ethylene glycol poisoning is a relatively common occurrence worldwide. Human poisoning often occurs in isolated cases, but may also occur in epidemics. Many cases of poisoning are the result of using ethylene glycol as a cheap substitute for alcohol or intentional ingestions in suicide attempts. Less commonly it has been used as a means of homicide. Children or animals may be exposed by accidental ingestion; children and animals often consume large amounts due to ethylene glycol having a sweet taste. In the United States there were 5816 cases reported to poison centers in 2002. Additionally, ethylene glycol was the most common chemical responsible for deaths reported by US poison centers in 2003. In Australia there were 17 cases reported to the Victorian poison center and 30 cases reported to the New South Wales poison center in 2007. However, these numbers may underestimate actual numbers because not all cases attributable to ethylene glycol are reported to poison control centers. Most deaths from ethylene glycol are intentional suicides; deaths in children due to unintentional ingestion are extremely rare.
In an effort to prevent poisoning, often a bittering agent called denatonium benzoate, known by the trade name Bitrex, is added to ethylene glycol preparations as an adversant to prevent accidental or intentional ingestion. The bittering agent is thought to stop ingestion as part of the human defense against ingestion of harmful substances is rejection of bitter tasting substances. In the United States, eight states (Oregon, California, New Mexico, Virginia, Arizona, Maine, Tennessee, Washington) have made the addition of bittering agents to antifreeze compulsory. Three follow up studies targeting limited populations or suicidal persons to assess the efficacy of bittering agents in preventing toxicity or death have, however, shown limited benefit of bittering ethylene glycol preparations in these two populations. Specifically, Mullins finds that bittering of antifreeze does not reduce reported cases of poisoning of preschoolers in the US state of Oregon. Similarly, White found that adding bittering agents did not decrease the frequency or severity of antifreeze poisonings in children under the age of 5. Additionally, another study by White found that suicidal persons are not deterred by the bittered taste of antifreeze in their attempts to kill themselves. These studies did not focus on poisoning of domestic pets or livestock, for example, or inadvertent exposure to bittered antifreeze among a large population (of non-preschool age children).
Poisoning of a raccoon was diagnosed in 2002 in Prince Edward Island, Canada. An online veterinary manual provides information on lethal doses of ethylene glycol for chicken, cattle, as well as cats and dogs, adding that younger animals may be more susceptible.
Red thread disease is a fungal infection found on lawns and other turfed areas. It is caused by the corticioid fungus "Laetisaria fuciformis" and has two separate stages. The stage that gives the infection its name is characterised by very thin, red, needle-like strands extending from the grass blade. These are stromata, which can remain viable in soil for two years. After germinating, the stromata infect grass leaf blades through their stomata. The other stage is visible as small, pink, cotton wool-like mycelium, found where the blades meet. It is common when both warmth and humidity are high.
Environment
"Laetisaria fuciformis", the fungus that causes red thread disease develops more often in cool (59-77°F) and wet conditions. These conditions are more present in the spring and fall when rainfall is higher and temperatures are slightly lower. Turf grass that is poor in nutrition and are slow growing are areas that are more susceptible to red thread disease. The fungus grows from the thread like red webbing structures called sclerotia. The sclerotia can survive in leaf blades, thatch, and soil for months to years. These areas that have been infected spread the disease by water, wind, and contaminated equipment. Since this fungus can survive for long periods of time it is essential to cure the infected area so further spreading of the disease does not occur.
Management
Managing red thread disease first starts by providing conditions that are not favorable for the fungal disease to develop. Having a balanced and adequate nitrogen fertilization program helps suppress the disease. This includes applying mild to substantial amounts of phosphorus and potassium to the turf. Other than properly fertilizing the turf, it is very important to maintain a soil pH between 6.5 and 7. Having a more basic pH creates less favorable conditions for a fungus to form. Reducing shade on turf areas also reduces chances of the fungal disease to form because shaded areas create a higher humidity near the turfs surface. Another technique to suppressing red thread disease is top dressing with compost. Suppression of the disease increases with the increase of compost used on the turf. Fungicides are not recommended to control red thread because the cost of chemical control is expensive and turf grasses usually recover from the disease quickly. If the use of fungicides is necessary, products containing strobilurins can be applied and can be very effective if applied before symptoms occur.
Hosts and symptoms
The hosts of the red thread disease only include turf grass. Turf grass is primarily present on home lawns and athletic fields. Some of these turf grass species include annual bluegrass, creeping bentgrass, Kentucky bluegrass, pereninial ryegrass, fine fescue, and bermudagrass. These species of grass are not the only types of turf that can be diagnosed with red thread disease but are the most common hosts. Noticeable symptoms of red thread disease are irregular yellow patches on the turf that are 2 to 24 inches in diameter. Affected areas are diagnosed with faintly pinkish web like sclerotia on the leaf blades. This sclerotia is the fungus growing on the leaf blades. This sclerotia has a reddish to pink spider web look to it.
The EPA lists no evidence for human cancer incidence connected with copper, and lists animal evidence linking copper to cancer as "inadequate". Two studies in mice have shown no increased incidence of cancer. One of these used regular injections of copper compounds, including cupric oxide. One study of two strains of mice fed copper compounds found a varying increased incidence of reticulum cell sarcoma in males of one strain, but not the other (there was a slightly increased incidence in females of both strains). These results have not been repeated.