Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.
Macular degeneration is more likely to be found in Caucasians than in people of African descent.
Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.
Optic disc drusen are found clinically in about 1% of the population but this increases to 3.4% in individuals with a family history of ODD. About two thirds to three quarters of clinical cases are bilateral. A necropsy study of 737 cases showed a 2.4% incidence with 2 out of 15 (13%) bilateral, perhaps indicating the insidious nature of many cases. An autosomal dominant inheritance pattern with incomplete penetrance and associated inherited dysplasia of the optic disc and its blood supply is suspected. Males and females are affected at equal rates. Caucasians are the most susceptible ethnic group. Certain conditions have been associated with disc drusen such as retinitis pigmentosa, angioid streaks, Usher syndrome, Noonan syndrome and Alagille syndrome. Optic disc drusen are not related to Bruch membrane drusen of the retina which have been associated with age-related macular degeneration.
A cone dystrophy is an inherited ocular disorder characterized by the loss of cone cells, the photoreceptors responsible for both central and color vision.
At least one type of autosomal dominant cone-rod dystrophy is caused by mutations in the guanylate cyclase 2D gene (GUCY2D) on chromosome 17.
Optic disc drusen (ODD) or optic nerve head drusen (ONHD) are globules of mucoproteins and mucopolysaccharides that progressively calcify in the optic disc. They are thought to be the remnants of the axonal transport system of degenerated retinal ganglion cells.
ODD have also been referred to as congenitally elevated or anomalous discs, pseudopapilledema, pseudoneuritis, buried disc drusen, and disc hyaline bodies. They may be associated with vision loss of varying degree occasionally resulting in blindness.
Choroideremia (; CHM) is a rare, X-linked recessive form of hereditary retinal degeneration that affects roughly 1 in 50,000 males. The disease causes a gradual loss of vision, starting with childhood night blindness, followed by peripheral vision loss, and progressing to loss of central vision later in life. Progression continues throughout the individual's life, but both the rate of change and the degree of visual loss are variable among those affected, even within the same family.
Choroideremia is caused by a loss-of-function mutation in the "CHM" gene which encodes Rab escort protein 1 (REP1), a protein involved in lipid modification of Rab proteins. While the complete mechanism of disease is not fully understood, the lack of a functional protein in the retina results in cell death and the gradual deterioration of the choroid, retinal pigment epithelium (RPE), and retinal photoreceptor cells.
As of 2017, there is no treatment for choroideremia; however, retinal gene therapy clinical trials have demonstrated a possible treatment.
Retinal dysplasia is an eye disease affecting the retina of animals and, less commonly, humans. It is usually a nonprogressive disease and can be caused by viral infections, drugs, vitamin A deficiency, or genetic defects. Retinal dysplasia is characterized by folds or rosettes (round clumps) of the retinal tissue.
Drusen are associated with aging and macular degeneration are distinct from another clinical entity, optic disc drusen, which is present on the optic nerve head. Both age-related drusen and optic disc drusen can be observed by ophthalmoscopy. Optical coherence tomography scans of the orbits or head, calcification at the head of the optic nerve without change in size of globe strongly suggests drusen in a middle-age or elderly patient.
Whether drusen promote AMD or are symptomatic of an underlying process that causes both drusen and AMD is not known, but they are indicators of increased risk of the complications of AMD.
'Hard drusen' may coalesce into 'soft drusen' which is a manifestation of macular degeneration.
Usually being asymptomatic, drusen are typically found during routine eye exams where the pupils have been dilated.
It is known to occur in Scotch Collies (smooth and rough collies), Shetland Sheepdogs, Australian Shepherds, Border Collies, Lancashire Heelers, and Nova Scotia Duck Tolling Retrievers. Frequency is high in Collies and Shetland Sheepdogs, and low in Border Collies and NSDTRs. In the United States, incidence in the genotype of collies has been estimated to be as high as 95 percent, with a phenotypic incidence of 80 to 85 percent.
Most cases of retinal dysplasia in dogs are hereditary. It can involve one or both retinas. Retinal dysplasia can be focal, multifocal, geographic, or accompanied by retinal detachment. Focal and multifocal retinal dysplasia appears as streaks and dots in the central retina. Geographic retinal dysplasia appears as an irregular or horseshoe-shaped area of mixed hyper or hyporeflectivity in the central retina. Retinal detachment occurs with complete retinal dysplasia, and is accompanied by blindness in that eye. Cataracts or glaucoma can also occur secondary to retinal dysplasia. Other causes of retinal dysplasia in dogs include infection with canine adenovirus or canine herpesvirus, or radiation of the eye in newborns.
Since the "CHM" gene is located on the X chromosome, symptoms are seen almost exclusively in men. While there are a few exceptions, female carriers have a noticeable lack of pigmentation in the RPE but do not experience any symptoms. Female carriers have a 50% chance of having either an affected son or a carrier daughter, while a male with choroideremia will have all carrier daughters and unaffected sons.
Even though the disease progression can vary significantly, there are general trends. The first symptom many individuals with choroideremia notice is a significant loss of night vision, which begins in youth. Peripheral vision loss occurs gradually, starting as a ring of vision loss, and continuing on to "tunnel vision" in adulthood. Individuals with choroideremia tend to maintain good visual acuity into their 40s, but eventual lose all sight at some point in the 50-70 age range. A study of 115 individuals with choroideremia found that 84% of patients under the age of 60 had a visual acuity of 20/40 or better, while 33% of patients over 60 years old had a visual acuity of 20/200 or worse. The most severe visual acuity impairment (only being able to count fingers or worse) did not occur until the seventh decade of life. The same study found the rate of visual acuity loss to be about 1 eye chart row per 5 years.
Controversies exist around eliminating this disorder from breeding Collies. Some veterinarians advocate only breeding dogs with no evidence of disease, but this would eliminate a large portion of potential breeding stock. Because of this, others recommend only breeding mildly affected dogs, but this would never completely eradicate the condition. Also, mild cases of choroidal hypoplasia may become pigmented and therefore undiagnosable by the age of three to seven months. If puppies are not checked for CEA before this happens, they may be mistaken for normal and bred as such. Checking for CEA by seven weeks of age can eliminate this possibility. Diagnosis is also difficult in dogs with coats of dilute color because lack of pigment in the choroid of these animals can be confused with choroidal hypoplasia. Also, because of the lack of choroidal pigment, mild choroidal hypoplasia is difficult to see, and therefore cases of CEA may be missed.
Until recently, the only way to know if a dog was a carrier was for it to produce an affected puppy. However, a genetic test for CEA became available at the beginning of 2005, developed by the Baker Institute for Animal Health, Cornell University, and administered through OptiGen. The test can determine whether a dog is affected, a carrier, or clear, and is therefore a useful tool in determining a particular dog's suitability for breeding.
The most extensive epidemiological survey on this congenital malformation has been carried out by Dharmasena et al and using English National Hospital Episode Statistics, they calculated the annual incidence of anophthalmia, microphthalmia and congenital malformations of orbit/lacrimal apparatus from 1999 to 2011. According to this study the annual incidence of congenital microphthalmia in the United Kingdom was 10.8 (8.2 to 13.5) in 1999 and 10.0 (7.6 to 12.4) in 2011.
CNV can occur rapidly in individuals with defects in Bruch's membrane, the innermost layer of the choroid. It is also associated with excessive amounts of Vascular endothelial growth factor (VEGF). As well as in wet macular degeneration, CNV can also occur frequently with the rare genetic disease pseudoxanthoma elasticum and rarely with the more common optic disc drusen. CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs primarily in the presence of cracks within the retinal (specifically) macular tissue known as lacquer cracks.
Less common causes of vitreous hemorrhage make up 6.4–18% of cases, and include:
- Proliferative sickle cell retinopathy
- Macroaneurysm
- Age-related macular degeneration
- Terson syndrome
- Retinal neovascularization as a result of branch or central retinal vein occlusion
- Other – about 7 cases in 100,000 have no known cause attributed to them.
Choroidal neovascularization (CNV) is the creation of new blood vessels in the choroid layer of the eye. Choroidal neovascularization is a common cause of neovascular degenerative maculopathy (i.e. 'wet' macular degeneration) commonly exacerbated by extreme myopia, malignant myopic degeneration, or age-related developments.
This is a partial list of human eye diseases and disorders.
The World Health Organization publishes a classification of known diseases and injuries, the International Statistical Classification of Diseases and Related Health Problems, or ICD-10. This list uses that classification.
As one gets older, pockets of fluid can develop in the vitreous. When these pockets develop near the back of the eye, the vitreous can pull away from the retina and possibly tear it. Posterior vitreous detachment accounts for 3.7–11.7% of vitreous hemorrhage cases.
Blurry vision, mild pain in the eyeballs, as well as small yellow, grey, and white spots may begin to appear on the retina.
One cause of the White Dot Syndromes as suggested by Gass involves viral or infectious agents. Specifically pertaining to the ‘AZOOR complex,’ Gass has postulated that a virus may enter the retina at the optic head and the infection may spread from one photoreceptor to another. Some unexplained features include the development of more than one disease in the same patient and the majority of cases occurring in females.
According to Becker’s common genetic hypothesis, “unlike mendelian genetic disorders, common autoimmune and inflammatory diseases arise from combinatorial interactions of common non-disease specific loci, disease specific loci, and specific environmental triggers.” An important aspect of this hypothesis pertains to the existence of common non-disease genes that predispose patients to autoimmune diseases. Jampol and Becker insinuate that ‘common susceptibility genes’ are present in patients affected by white dot syndromes. The presence of environmental triggers, such as viral infections, immunizations, and stress, and interactions with other genes contribute to the development of the white dot syndromes. Additionally, Jampol and Becker hypothesize that the predisposing genetic loci can be identified.
Gass points to a lack of evidence in support of the Becker theory. Instead, Gass highlights that although evidence indicates that patients with AZOOR have a greater chance of developing autoimmune diseases, this does not mean that the AZOOR complex of disorders are themselves autoimmune diseases. This is supported by the difficulty in detecting “retinal autoantibodies” in AZOOR patients.
Two other diseases which also present with white dots on the fundus are retinitis punctata albescens and fundus albipunctatus. These diseases are not white dot syndromes, but have much more defined etiology. Retinitis punctata albescens is caused by mutations in RLBP1, the gene for retinaldehyde binding protein 1. In comparison, fundus albipunctatus is caused by mutations in RDH5 gene for an 11-cis-RDH in RPE cells.
Papillorenal syndrome, also called renal-coloboma syndrome or isolated renal hypoplasia, is an autosomal dominant genetic disorder marked by underdevelopment (hypoplasia) of the kidney and colobomas of the optic nerve.
Chorioretinitis is usually treated with a combination of corticosteroids and antibiotics. However, if there is an underlying cause such as HIV, specific therapy can be started as well.
A 2012 Cochrane Review found weak evidence suggesting that ivermectin could result in reduced chorioretinal lesions in patients with onchocercal eye disease. More research is needed to support this finding.
Chorioretinitis is often caused by toxoplasmosis and cytomegalovirus infections (mostly seen in immunodeficient subjects such as people with HIV or on immunosuppressant drugs). Congenital toxoplasmosis via transplacental transmission can also lead to sequelae such as chorioretinitis along with hydrocephalus and cerebral calcifications. Other possible causes of chorioretinitis are syphilis, sarcoidosis, tuberculosis, Behcet's disease, onchocerciasis, or West Nile virus. Chorioretinitis may also occur in presumed ocular histoplasmosis syndrome (POHS); despite its name, the relationship of POHS to "Histoplasma" is controversial.