Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Campomelic dysplasia has a reported incidence of 0.05-0.09 per 10000 live births.
In nearly 95% of the cases, death occurs in the neonatal period due to respiratory distress, generally related to small chest size or insufficient development of the trachea and other upper airway structures.
Among survivors of CMD, the skeletal malformations change over time to include worsening scoliosis or kyphosis resulting in decreased trunk size relative to the limb length. Neurological damage is also often seen including mental retardation and deafness. Even among survivors of the prenatal period, CMD patients have shortened life spans due to lifelong respiratory issues. Those patients with ambiguous genitalia or sex reversal at birth, of course, maintain that state, and are either sterile or have reduced fertility.
A recent article in 2015 reported a persistent notochord in a fetus at 23 weeks of gestation. The fetus had an abnormal spine, shortened long bones and a left clubfoot. After running postmortem tests and ultrasound, the researchers believed that the fetus suffered from hypochondrogenesis. Hypochondrogenesis is caused when type II collagen is abnormally formed due to a mutation in the COL2A1 gene. Normally, the cartilaginous notochord develops into the bony vertebrae in a human body. The COL2A1 gene results in malformed type II collagen, which is essential in the transition from collagen to bone. This is the first time that researchers found a persistent notochord in a human body due to a COL2A1 mutation.
Though the children affected with CLSD will have problems throughout life, the treatment for this disease thus far is symptomatic. However, prognosis is good; at the time of the most recently published articles, identified children were still alive at over 4 years of age.
Mutant proteins still maintain some residual activity, allowing for the release of some collagen, but still form an extremely distended endoplasmic reticulum.
One person in every 100,000 is affected. Ollier disease is not normally diagnosed until toddler years because it is not very visible.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Cranio–lenticulo–sutural dysplasia (CLSD, or Boyadjiev-Jabs syndrome) is a neonatal/infancy disease caused by a disorder in the 14th chromosome. It is an autosomal recessive disorder, meaning that both recessive genes must be inherited from each parent in order for the disease to manifest itself. The disease causes a significant dilation of the endoplasmic reticulum in fibroblasts of the host with CLSD. Due to the distension of the endoplasmic reticulum, export of proteins (such as collagen) from the cell is disrupted.
The production of SEC23A protein is involved in the pathway of exporting collagen (the COPII pathway), but a missense mutation causes and underproduction of SEC23A which inhibits the pathway, affecting collagen secretion. This decrease in collagen secretion can lead to the bone defects that are also characteristic of the disease, such as skeletal dysplasia and under-ossification. Decreased collagen in CLSD-affected individuals contributes to improper bone formation, because collagen is a major protein in the extracellular matrix and contributes to its proper mineralization in bones. It has also been hypothesized that there are other defects in the genetic code besides SEC23A that contribute to the disorder.
Mandibuloacral dysplasia is a rare autosomal recessive syndrome characterized by mandibular hypoplasia, delayed cranial suture closure, dysplastic clavicles, abbreviated and club-shaped terminal phalanges, acroosteolysis, atrophy of the skin of the hands and feet, and typical facial changes.
Types include:
Spondyloepimetaphyseal dysplasia is a genetic condition affecting the bones.
Types include:
- Spondyloepimetaphyseal dysplasia, Strudwick type
- Spondyloepiphyseal dysplasia congenita
- Spondyloepimetaphyseal dysplasia, Pakistani type
Ischiopatellar dysplasia is often considered a familial condition. Ischiopatellar dysplasia has been identified on region 5.6 cM on chromosome 17q22. Mutations in the TBX4 (T-box protein 4) gene have been found to cause ischiopatellar dysplasia due to the essential role TBX4 plays in lower limb development since TBX4 is a transcription factor.
Radiographic features include delayed epiphyseal ossification at the hips and knees, platyspondyly with irregular end plates and narrowed joint spaces, diffuse early osteoarthritic changes (in the spine and hands), mild brachydactyly and mild metaphyseal abnormalities which predominantly involve the hips and knees.
Opsismodysplasia is a type of skeletal dysplasia (a bone disease that interferes with bone development) first described by Zonana and associates in 1977, and designated under its current name by Maroteaux (1984). Derived from the Greek "opsismos" ("late"), the name "opsismodysplasia" describes a delay in bone maturation. In addition to this delay, the disorder is characterized by (short or undersized bones), particularly of the hands and feet, delay of ossification (bone cell formation), platyspondyly (flattened vertebrae), irregular metaphyses, an array of facial aberrations and respiratory distress related to chronic infection. Opsismodysplasia is congenital, being apparent at birth. It has a variable mortality, with some affected individuals living to adulthood. The disorder is rare, with an incidence of less than 1 per 1,000,000 worldwide. It is inherited in an autosomal recessive pattern, which means the defective (mutated) gene that causes the disorder is located on an autosome, and the disorder occurs when two copies of this defective gene are inherited. No specific gene has been found to be associated with the disorder. It is similar to spondylometaphyseal dysplasia, Sedaghatian type.
Kniest Dysplasia is an autosomal dominant condition. This means that the person only needs to have one copy of the mutated gene in order to have the condition. People with a family history are at a higher risk of having the disease than people with no family history. A random mutation in the gene can cause a person with no family history to also have the condition.
Liebenberg Syndrome is a rare autosomal genetic disease that involves a deletion mutation upstream of the PITX1 gene, which is one that's responsible for the body's organization, specifically in forming lower limbs. In animal studies, when this deletion was introduced to developing birds, their wing buds were noted to take on limb-like structures.
The condition was first described by Dr. F. Liebenberg in 1973 while he followed multiple generations of a South African family, but it has since been noticed in other family lineages across the world.
Multiple epiphyseal dysplasia (MED) encompasses a spectrum of skeletal disorders, most of which are inherited in an autosomal dominant form. However, there is an autosomal recessive form.
Associated genes include COL9A1, COL9A2, COL9A3, COMP, and MATN3.
Types include:
Ollier disease carries a high risk of skeletal, visceral and brain malignancy which occurs in approximately 25% of patients. Juvenile granulosa cell tumour has been associated with the disease. The incidence of secondary chondrosarcoma in Ollier disease is not known, but may be as high as 25%, pelvis and shoulder girdle being the commonest locations. A related disorder called Maffucci syndrome named after Angelo Maffucci is characterized by enchondromas associated with multiple hemangiomas which usually occur in the hands and feet. Maffucci syndrome carries a higher risk for cancer.
In utero exposure to cocaine and other street drugs can lead to septo-optic dysplasia.
Opsismodysplasia is inherited in an autosomal recessive manner. This means the defective gene(s) responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder. Currently, no specific mutation in any gene has been found to cause the disorder.
It appears that the gene inositol polyphosphate phosphatase-like 1 is the cause of this condition in at least some cases.
Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet.
The term thanatophoric is Greek for "death bearing". Children with this condition are usually stillborn or die shortly after birth from respiratory failure, however a small number of individuals have survived into childhood and a very few beyond. Survivors have difficulty breathing on their own and require respiratory support such as high flow oxygen through a canula or ventilator support via tracheostomy. There may also be evidence of spinal stenosis and seizures.
The oldest known living TD survivor is a 29-year-old female. One male lived to be 26 years old. Another male lived to age 20. TD survivor, Chrisopher Álvarez, 18, is Colombian living in New York. Two children with TD aged 10 and 12, a male and a female, are known in Germany. There is also a 6-year-old male living with TD and two 1-year old males.
Autosomal recessive multiple epiphyseal dysplasia (ARMED), also called epiphyseal dysplasia, multiple, 4 (EDM4), multiple epiphyseal dysplasia with clubfoot or –with bilayered patellae, is an autosomal recessive congenital disorder affecting cartilage and bone development. The disorder has relatively mild signs and symptoms, including joint pain, scoliosis, and malformations of the hands, feet, and knees.
Some affected individuals are born with an inward- and downward-turning foot (a clubfoot). An abnormality of the kneecap called a double-layered patella is also relatively common. Although some people with recessive multiple epiphyseal dysplasia have short stature as adults, most are of normal height. The incidence is unknown as many cases are not diagnosed due to mild symptoms.
It can be associated with missense mutations in fibroblast growth factor receptor-3. It is inherited in an autosomal dominant manner.
Gerodermia osteodysplastica (GO), also called geroderma osteodysplasticum and Walt Disney dwarfism, is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.
Usage of the name "Walt Disney dwarfism" is attributed to the first known case of the disorder, documented in a 1950 journal report, in which the authors described five affected members from a Swiss family as having the physical appearance of dwarves from a Walt Disney film.
The terms "geroderma" or "gerodermia" can be used interchangeably with "osteodysplastica" or "osteodysplasticum", with the term "hereditaria" sometimes appearing at the end.
Many features of gerodermia osteodysplastica (GO) and another autosomal recessive form of cutis laxa, wrinkly skin syndrome (WSS, ""), are similar to such an extent that both disorders were believed to be variable phenotypes of a single disorder.
Several delineating factors, however, suggest that gerodermia osteodysplastica and wrinkly skin syndrome are distinct entities, but share the same clinic spectrum.
While the prevailing feature of wrinkly, loose skin is more localized with GO, it is usually systemic, yet eases in severity with age during the course of WSS. Also, as the fontanelles ("soft spots") are usually normal on the heads of infants with GO, they are often enlarged in WSS infants.
While WSS is associated with mutations of genes on chromosomes 2, 5, 7, 11 and 14; GO has been linked to mutations in the protein GORAB. A serum sialotransferrin type 2 pattern, also observed with WSS, is not present in GO patients.
But perhaps the most notable feature, differentiating GO from WSS and similar cutis laxa disorders, is the age-specific metaphyseal peg sometimes found in GO-affected long bone, near the knee. Not appearing until around age 4–5, then disappearing by physeal closure, this oddity of bone is thought to represent a specific genetic marker unique to GO and its effects on bone development.
Mutations in the SLC26A2 (DTDST) gene, located at human chromosome 5q32-33.1, are the cause of ARMED. It is considered a milder disorder within a spectrum of skeletal disorders caused by mutations in the gene, which encodes a protein that is essential for the normal development of cartilage and its conversion to bone. Mutations in the SLC26A2 gene alter the structure of developing cartilage, preventing bones from forming properly and resulting in associated skeletal maldevelopment.
The disorder is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome (chromosome 5 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Individuals affected by certain ED syndromes cannot perspire. Their sweat glands may function abnormally or may not have developed at all because of inactive proteins in the sweat glands. Without normal sweat production, the body cannot regulate temperature properly. Therefore, overheating is a common problem, especially during hot weather. Access to cool environments is important.