Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recombinant EPO (r-EPO) may be given to premature infants to stimulate red blood cell production. Brown and Keith (1999) studied two groups of 40 very low birth weight (VLBW) infants to compare the erythropoietic response between two and five times a week dosages of recombinant human erythropoietin (r-EPO) using the same dose. They established that more frequent dosing of the same weekly amount of r-EPO generated a significant and continuous increase in Hb in VLBW infants. The infants that received five dosages had 219,857 mm³ while infants that received two dosages only had 173,361 mm³. However, the response to r-EPO typically takes up to two weeks and the higher dosages lead to higher Hb. Brown and Keith (1999) study also showed responses between two dosage schedules (two times a week and five times a week). Infants were recruited for gestational age—age since conception—≤27 weeks and 28 to 30 weeks and then randomized into the two groups, each totaling 500 U/kg a week. Brown and Keith found that after two weeks of r-EPO administration, Hb counts had increased and leveled off; the infants who received r-EPO five times a week had significantly higher Hb counts. This was present at four weeks for all infants ≤30 weeks gestation and at 8 weeks for infants ≤27 weeks gestation.
To date, studies of r-EPO use in premature infants have had mixed results. Ohls et al. examined the use of early r-EPO plus iron and found no short-term benefits in two groups of infants (172 infants less than 1000 g and 118 infants 1000–1250 g). All r-EPO treated infants received 400 U/g three times a week until they reached 35 weeks gestational age. The use of r-EPO did not decrease the average number of transfusions in the infants born at less than 1000 g, or the percentage of infants in the 1000 to 1250 group. A multi-center European trial studied early versus late r-EPO in 219 infants with birth weights between 500 and 999 g. An r-EPO close of 750 U/kg/week was given to infants in both the early (1–9 weeks) and late (4–10 weeks) groups. The two r-EPO groups were compared to a control group who did not receive r-EPO. Infants in all three groups received 3 to 9 mg/kg of enteral iron. These investigators reported a slight decrease in transfusion and donor exposures in the early r-EPO group (1–9 weeks): 13% early, 11% late and 4% control group. It is likely that only a carefully selected subpopulation of infants may benefit from its use. Contrary to what just said, Bain and Blackburn (2004) also state in another study the use of r-EPO does not appear to have a significant effect on reducing the numbers of early transfusions in most infants, but may be useful to reduce numbers of late transfusion in extremely low-birth-weight infants. A British task force to establish transfusion guidelines for neonates and young children and to help try to explain this confusion recently concluded that “the optimal dose, timing, and nutritional support required during EPO treatment has yet to be defined and currently the routine use of EPO in this patient population is not recommended as similar reduction in blood use can probably be achieved with appropriate transfusion protocols.”
Preterm infants are often anemic and typically experience heavy blood losses from frequent laboratory testing in the first few weeks of life. Although their anemia is multifactorial, repeated blood sampling and reduced erythropoiesis with extremely low serum levels of erythropoietin (EPO) are major determining factors. Blood sampling done for laboratory testing can easily remove enough blood to produce anemia. Obladen, Sachsenweger and Stahnke (1987) studied 60 very low birth weight infants during the first 28 days of life. Infants were divided into 3 groups, group 1 (no ventilator support, 24 ml/kg blood loss), group 2(minor ventilated support, 60 ml/kg blood loss), and group 3(ventilated support for respiratory distress syndrome, 67 ml/kg blood loss). Infants were checked for clinical symptoms and laboratory signs of anemia 24 hours before and after the blood transfusion. The study found that groups 2 and 3 who had significant amount of blood loss, showed poor weight gain, pallor and distended abdomen. These reactions are the most frequent symptoms of anemia.
During the first weeks of life, all infants experience a decline in circulating red blood cell (RBC) volume generally expressed as blood hemoglobin concentration (Hb). As anemia develops, there is even more of a significant reduction in the concentration of hemoglobin. Normally this stimulates a significant increased production of erythropoietin (EPO), but this response is diminished in premature infants. Dear, Gill, Newell, Richards and Schwarz (2005) conducted a study to show that there is a weak negative correlation between EPO and Hb. The researchers recruited 39 preterm infants from 10 days of age or as soon as they could manage without respiratory support. They estimated total EPO and Hb weekly and 2 days after a blood transfusion. The study found that when Hb>10, EPO mean was 20.6 and when Hb≤10, EPO mean was 26.8. As Hb goes down, EPO goes up. While the reason for this decreased response is not fully understood, Strauss (n.d.) states that it results from both physiological factors (e.g., the rapid rate of growth and need for a commensurate increase in RBC mass to accompany the increase in blood volume) and, in sick premature infants, from phlebotomy blood losses. In premature infants this decline occurs earlier and more pronounced that it does in healthy term infants. Healthy term infants Hb rarely falls below 9 g/dL at an age of approximately 10–12 weeks, while in premature infants, even in those without complicating illnesses, the mean Hb falls to approximately 8g/dL in infants of 1.0-1.5 kg birth weight and to 7g/dL in infants <1.0 kg. Because this postnatal drop in hemoglobin level is universal and is well tolerated in term infants, it is commonly referred to as the “physiologic” anemia of infancy. However, in premature infants the decline in Hb may be associated with abnormal clinical signs severe enough to prompt transfusions.
A number of factors have been identified that are linked to a higher risk of a preterm birth such as being less than 18 years of age. Maternal height and weight can play a role.
Further, in the US and the UK, black women have preterm birth rates of 15–18%, more than double than that of the white population. Filipinos are also at high risk of premature birth, and it is believed that nearly 11-15% of Filipinos born in the U.S. (compared to other Asians at 7.6% and whites at 7.8%) are premature. Filipinos being a big risk factor is evidenced with the Philippines being the 8th highest ranking in the world for preterm births, the only non-African country in the top 10. This discrepancy is not seen in comparison to other Asian groups or Hispanic immigrants and remains unexplained.
Pregnancy interval makes a difference as women with a six-month span or less between pregnancies have a two-fold increase in preterm birth. Studies on type of work and physical activity have given conflicting results, but it is opined that stressful conditions, hard labor, and long hours are probably linked to preterm birth.
A history of spontaneous (i.e., miscarriage) or surgical abortion has been associated with a small increase in the risk of preterm birth, with an increased risk with increased number of abortions, although it is unclear whether the increase is caused by the abortion or by confounding risk factors (e.g., socioeconomic status). Increased risk has not been shown in women who terminated their pregnancies medically. Pregnancies that are unwanted or unintended are also a risk factor for preterm birth.
Adequate maternal nutrition is important. Women with a low BMI are at increased risk for preterm birth. Further, women with poor nutrition status may also be deficient in vitamins and minerals. Adequate nutrition is critical for fetal development and a diet low in saturated fat and cholesterol may help reduce the risk of a preterm delivery. Obesity does not directly lead to preterm birth; however, it is associated with diabetes and hypertension which are risk factors by themselves. To some degree those individuals may have underlying conditions (i.e., uterine malformation, hypertension, diabetes) that persist.
Women with celiac disease have an increased risk of the development of preterm birth. The risk of preterm birth is more elevated when celiac disease remains undiagnosed and untreated.
Marital status is associated with risk for preterm birth. A study of 25,373 pregnancies in Finland revealed that unmarried mothers had more preterm deliveries than married mothers (P=0.001). Pregnancy outside of marriage was associated overall with a 20% increase in total adverse outcomes, even at a time when Finland provided free maternity care. A study in Quebec of 720,586 births from 1990 to 1997 revealed less risk of preterm birth for infants with legally married mothers compared with those with common-law wed or unwed parents.
Genetic make-up is a factor in the causality of preterm birth. Genetics has been a big factor into why Filipinos have a high risk of premature birth as the Filipinos have a large prevalence of mutations that help them be predisposed to premature births. An intra- and transgenerational increase in the risk of preterm delivery has been demonstrated. No single gene has been identified.
Subfertility is associated with preterm birth. Couples who have tried more than 1 year versus those who have tried less than 1 year before achieving a spontaneous conception have an adjusted odds ratio of 1.35 (95% confidence interval 1.22-1.50) of preterm birth. Pregnancies after IVF confers a greater risk of preterm birth than spontaneous conceptions after more than 1 year of trying, with an adjusted odds ratio of 1.55 (95% CI 1.30-1.85).
Hemolytic anemia affects nonhuman species as well as humans. It has been found, in a number of animal species, to result from specific triggers.
Some notable cases include hemolytic anemia found in black rhinos kept in captivity, with the disease, in one instance, affecting 20% of captive rhinos at a specific facility. The disease is also found in wild rhinos.
Dogs and cats differ slightly from humans in some details of their RBC composition and have altered susceptibility to damage, notably, increased susceptibility to oxidative damage from consumption of onion. Garlic is less toxic to dogs than onion.
Certain gastrointestinal disorders can cause anemia. The mechanisms involved are multifactorial and not limited to malabsorption but mainly related to chronic intestinal inflammation, which causes dysregulation of hepcidin that leads to decreased access of iron to the circulation.
- "Helicobacter pylori" infection.
- Gluten-related disorders: untreated celiac disease and non-celiac gluten sensitivity. Anemia can be the only manifestation of celiac disease, in absence of gastrointestinal or any other symptoms.
- Inflammatory bowel disease.
A moderate degree of iron-deficiency anemia affects approximately 610 million people worldwide or 8.8% of the population. It is slightly more common in females (9.9%) than males (7.8%). Mild iron deficiency anemia affects another 375 million.
The prevalence of iron deficiency as a cause of anemia varies among countries; in the groups in which anemia is most common, including young children and a subset of non-pregnant women, iron deficiency accounts for a fraction of anemia cases in these groups ("25% and 37%, respectively"). Iron deficiency is a more common cause of anemia in other groups, including pregnant women.
Within the United States, iron-deficiency anemia affects about 2% of adult males, 10.5% of Caucasian women, and 20% of African-American and Mexican-American women.
A moderate degree of iron-deficiency anemia affected approximately 610 million people worldwide or 8.8% of the population. It is slightly more common in females (9.9%) than males (7.8%). Mild iron deficiency anemia affects another 375 million.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
The use of fertility medication that stimulates the ovary to release multiple eggs and of IVF with embryo transfer of multiple embryos has been implicated as an important factor in preterm birth. Maternal medical conditions increase the risk of preterm birth. Often labor has to be induced for medical reasons; such conditions include high blood pressure, pre-eclampsia, maternal diabetes, asthma, thyroid disease, and heart disease.
In a number of women anatomical issues prevent the baby from being carried to term. Some women have a weak or short cervix (the strongest predictor of premature birth) Women with vaginal bleeding during pregnancy are at higher risk for preterm birth. While bleeding in the third trimester may be a sign of placenta previa or placental abruption – conditions that occur frequently preterm – even earlier bleeding that is not caused by these conditions is linked to a higher preterm birth rate. Women with abnormal amounts of amniotic fluid, whether too much (polyhydramnios) or too little (oligohydramnios), are also at risk.
The mental status of the women is of significance. Anxiety and depression have been linked to preterm birth.
Finally, the use of tobacco, cocaine, and excessive alcohol during pregnancy increases the chance of preterm delivery. Tobacco is the most commonly abused drug during pregnancy and contributes significantly to low birth weight delivery. Babies with birth defects are at higher risk of being born preterm.
Passive smoking and/or smoking before the pregnancy influences the probability of a preterm birth. The World Health Organization published an international study in March 2014.
Presence of anti-thyroid antibodies is associated with an increased risk preterm birth with an odds ratio of 1.9 and 95% confidence interval of 1.1–3.5.
A 2004 systematic review of 30 studies on the association between intimate partner violence and birth outcomes concluded that preterm birth and other adverse outcomes, including death, are higher among abused pregnant women than among non-abused women.
The Nigerian cultural method of abdominal massage has been shown to result in 19% preterm birth among women in Nigeria, plus many other adverse outcomes for the mother and baby. This ought not be confused with massage conducted by a fully trained and licensed massage therapist or by significant others trained to provide massage during pregnancy, which has been shown to have numerous positive results during pregnancy, including the reduction of preterm birth, less depression, lower cortisol, and reduced anxiety.
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.
The body normally gets the iron it requires from foods. If a person consumes too little iron, or iron that is poorly absorbed (non-heme iron), they can become iron deficient over time. Examples of iron-rich foods include meat, eggs, leafy green vegetables and iron-fortified foods. For proper growth and development, infants and children need iron from their diet. A high intake of cow’s milk is associated with an increased risk of iron-deficiency anemia. Other risk factors for iron-deficiency anemia include low meat intake and low intake of iron-fortified products.
Repetitive impacts to the body may cause mechanical trauma and bursting (hemolysis) of red blood cells. This has been documented to have occurred in the feet during running and hands from Conga or Candombe drumming. Defects in red blood cell membrane proteins have been identified in some of these patients. Free haemoglobin is released from lysed red blood cells and filtered into the urine.
Acquired hemolytic anemia may be caused by immune-mediated causes, drugs and other miscellaneous causes.
- Immune-mediated causes could include transient factors as in "Mycoplasma pneumoniae" infection (cold agglutinin disease) or permanent factors as in autoimmune diseases like autoimmune hemolytic anemia (itself more common in diseases such as systemic lupus erythematosus, rheumatoid arthritis, Hodgkin's lymphoma, and chronic lymphocytic leukemia).
- Spur cell hemolytic anemia
- Any of the causes of hypersplenism (increased activity of the spleen), such as portal hypertension.
- Acquired hemolytic anemia is also encountered in burns and as a result of certain infections (e.g. malaria).
- Lead poisoning resulting from the environment causes non-immune hemolytic anemia.
- Runners can suffer hemolytic anemia due to "footstrike hemolysis", owing to the destruction of red blood cells in feet at foot impact.
- Low-grade hemolytic anemia occurs in 70% of prosthetic heart valve recipients, and severe hemolytic anemia occurs in 3%.
In general, AIHA in children has a good prognosis and is self-limiting. However, if it presents within the first two years of life or in the teenage years, the disease often follows a more chronic course, requiring long-term immunosuppression, with serious developmental consequences. The aim of therapy may sometimes be to lower the use of steroids in the control of the disease. In this case, splenectomy may be considered, as well as other immunosuppressive drugs. Infection is a serious concern in patients on long-term immunosuppressant therapy, especially in very young children (less than two years).
Basically classified by causative mechanism, types of congenital hemolytic anemia include:
- Genetic conditions of RBC Membrane
- Hereditary spherocytosis
- Hereditary elliptocytosis
- Genetic conditions of RBC metabolism (enzyme defects). This group is sometimes called "congenital nonspherocytic (hemolytic) anemia", which is a term for a congenital hemolytic anemia without spherocytosis, and usually excluding hemoglobin abnormalities as well, but rather encompassing defects of glycolysis in the erythrocyte.
- Glucose-6-phosphate dehydrogenase deficiency (G6PD or favism)
- Pyruvate kinase deficiency
- Aldolase A deficiency
- Hemoglobinopathies/genetic conditions of hemoglobin
- Sickle cell anemia
- Congenital dyserythropoietic anemia
- Thalassemia
Untreated, severe aplastic anemia has a high risk of death. Modern treatment, by drugs or stem cell transplant, has a five-year survival rate that exceeds 85%, with younger age associated with higher survival.
Survival rates for stem cell transplant vary depending on age and availability of a well-matched donor. Five-year survival rates for patients who receive transplants have been shown to be 82% for patients under age 20, 72% for those 20–40 years old, and closer to 50% for patients over age 40. Success rates are better for patients who have donors that are matched siblings and worse for patients who receive their marrow from unrelated donors.
Older people (who are generally too frail to undergo bone marrow transplants), and people who are unable to find a good bone marrow match, undergoing immune suppression have five-year survival rates of up to 75%.
Relapses are common. Relapse following ATG/ciclosporin use can sometimes be treated with a repeated course of therapy. In addition, 10-15% of severe aplastic anemia cases evolve into MDS and leukemia. According to a study, for children who underwent immunosuppressive therapy, about 15.9% of children who responded to immunosuppressive therapy encountered relapse.
Milder disease can resolve on its own.
Runner’s macrocytosis is a phenomenon of increased red blood cell size as a compensatory mechanism for increased red blood cell turnover. The impact forces from running can lead to red blood cell hemolysis and accelerate red blood cell production. This can shift the ratio of red blood cells towards younger, larger cells. This shift may be reflected in higher than normal mean corpuscular volume (MCV) values, an indicator of red blood cell size.
This is not a pathological condition but may indicate a propensity toward iron deficiency anemia due to high red blood cell turnover.
The issue is thought of as representing any of the following:
- a decreased production of normal-sized red blood cells (e.g., anemia of chronic disease, aplastic anemia);
- an increased production of HbS as seen in sickle cell disease (not sickle cell trait);
- an increased destruction or loss of red blood cells (e.g., hemolysis, posthemorrhagic anemia);
- an uncompensated increase in plasma volume (e.g., pregnancy, fluid overload);
- a B2 (riboflavin) deficiency
- a B6 (pyridoxine) deficiency
- or a mixture of conditions producing microcytic and macrocytic anemia.
Blood loss, suppressed production of RBCs or hemolysis represent most cases of normocytic anemia. In blood loss, morphologic findings are generally unremarkable except after 12 to 24 hrs where polychromasia appears. For reduced production of RBCs, like with low erythropoietin, the RBC morphology is unremarkable. Patients with disordered RBC production, e.g. myelodysplastic syndrome, may have a dual population of elliptocytes, teardrop cells, or other poikilocytes as well as a nucleated RBCs. Hemolysis will often demonstrate poikilocytes specific to a cause or mechanism. E.g. Bite cells and/or blistor cells for oxidative hemolysis, Acanthocytes for pyruvate kinase deficiency or McLeod phenotype, Sickle cells for sickle cell anemia, Spherocytes for immune-mediated hemolysis or hereditary spherocytosis, Elliptocytosis for iron deficiency or hereditary elliptocytosis and schistocytes for intravascular hemolysis. Many hemolytic anemias show multiple poikilocytes such as G6PD deficiency which may show blister and bites cells as well as shistocytes. Neonatal hemolysis may not follow the classic patterns as in adults
Typical causes of microcytic anemia include:
- Childhood
- Iron deficiency anemia, by far the most common cause of anemia in general and of microcytic anemia in particular
- Thalassemia
- Adulthood
- Iron deficiency anemia
- Sideroblastic anemia, In congenital sideroblastic anemia the MCV (mean corpuscular volume) is either low or normal. In contrast, the MCV is usually high in the much more common acquired sideroblastic anemia.
- Anemia of chronic disease, although this more typically causes normochromic, normocytic anemia. Microcytic anemia has been discussed by Weng et al.
- Lead poisoning
- Vitamin B (pyridoxine) deficiency
Other causes that are typically thought of as causing normocytic anemia or macrocytic anemia must also be considered, and the presence of two or more causes of anemia can distort the typical picture.
There are five main causes of microcytic anemia forming the acronym TAILS. Thalassemia, Anemia of chronic disease, Iron deficiency, Lead poisoning and Congenital sideroblastic anemia. Only the first three are common in most parts of the world. In theory, these three can be differentiated by their red blood cell (RBC) morphologies. Anemia of chronic disease shows unremarkable RBCs, iron deficiency shows anisocytosis, anisochromia and elliptocytosis, and thalessemias demonstrate target cells and coarse basophilic stippling. In practice though elliptocytes and anisocytosis are often seen in thalessemia and target cells occasionally in iron deficiency. All three may show unremarkable RBC morphology. Coarse basophlic stippling is one reliable morphologic finding of thalessemia which does not appear in iron deficiency or anemia of chronic disease. The patient should be in an ethnically at risk group and the diagnosis is not confirmed without a confirmatory method such as hemoglobin HPLC, H body staining, molecular testing or another reliable method. Course basophlic stippling occurs in other cases as seen in Table 1
A normocytic anemia is defined as an anemia with a mean corpuscular volume (MCV) of 80–100 which is the normal range. However, the hematocrit and hemoglobin is decreased.
Nutritional anemia refers to the low concentration of hemoglobin due to poor diet. According to the World Health Organization, a hemoglobin concentration below 7.5 mmol/L and 8. mmol/L for women and men, respectively, is considered to be anemic. Thus, anemia can be diagnosed with blood tests. Hemoglobin is used to transport and deliver oxygen in the body. Without oxygen, the human body cannot undergo respiration and create ATP, thereby depriving cells of energy.
Nutritional anemia is caused by a lack of iron, protein, B12, and other vitamins and minerals that needed for the formation of hemoglobin. Folic acid deficiency is a common association of nutritional anemia and iron deficiency anemia is the most common nutritional disorder.
Signs of anemia include cyanosis, jaundice, and easy bruising. In addition, anemic patients may experience difficulties with memory and concentration, fatigue, lightheadedness, sensitivity to temperature, low energy levels, shortness of breath, and pale skin. Symptoms of severe or rapid-onset anemia are very dangerous as the body is unable to adjust to the lack of hemoglobin. This may result in shock and death. Mild and moderate anemia have symptoms that develop slowly over time.[5] If patients believe that they are at risk for or experience symptoms of anemia, they should contact their doctor.
Treatments for nutritional anemia includes replacement therapy is used to elevate the low levels of nutrients.[1] Diet improvement is a way to combat nutritional anemia and this can be done by taking dietary supplements such as iron, folate, and Vitamin B12.[2] These supplements are available over-the-counter however, a doctor may prescribe prescription medicine as needed, depending on the patient’s health needs.
Internationally, anemia caused by iron deficiencies is the most common nutritional disorder. It is the only significantly prevalent nutritional deficiency disorder in industrialized countries. In poorer areas, anemia is worsened by infectious diseases such as HIV/AIDS, tuberculosis, hookworm infestation, and Malaria. In developing countries, about 40% of preschool children and 50% of pregnant women are estimated to be anemic. 20% of maternal deaths can be contributed to anemia. Health consequences of anemia include low pregnancy outcome, impaired cognitive and physical development, increased rate of morbidity, and reduced rate of work in adults.
'
Nutritional Anemia has many different causes, each either nutritional or non-nutritional. Nutritional causes are vitamin and mineral deficiencies and non-nutritional causes can be infections. The number one cause of this type of anemia however is iron deficiency.
An insufficient intake of iron, Vitamin B12, and folic acid impairs the bone marrow function.
The lack of iron within a person’s body can also stem from ulcer bacteria. These microbes live in the digestive track and after many years cause ulcer’s in the lining of your stomach or small intestine. Therefore, a high percentage of patients with nutritional anemia may have potential gastrointestinal disorder that causes chronic blood loss. This is common in immunocompromised, elderly, and diabetic people. High blood loss can also come from increases loss of blood during menstruation, childbirth, cancers of the intestines, and a disorder that hinders blood’s ability to coagulate.
Medications can have adverse effects and cause nutritional anemia as well. Medications that stop the absorption of iron in the gut and cause bleeding from the gut (NSAIDs and Aspirin) can be culprits in the development of this condition. Hydrocortisones and valproic acid are also two drugs that cause moderate bleeding from the gut. Amoxicillin and phenytoin are the ability to cause a vitamin B12 deficiency.
Other common causes are thyroid disorders, lead toxcities, infectious diseases (e.g Malaria), Alcoholism, and Vitamin E deficiency.
Symptoms
Symptoms of nutritional anemia can include fatigue and lack of energy. However if symptoms progress, one may experience shortness of breath, rapid pulse, paleness --especially in the hands, eyelids and fingernails---, swelling of ankles, hair loss, lightheadedness, compulsive and atypical cravings, constipation, depression, muscle twitching, numbness, or burning and chest pain.
Those who have nutritional anemia often show little to no symptoms. Often, symptoms can go undetected as mild forms of the anemia have only minor symptoms.
----[1] “Micronutrient deficiencies” World Health Organization. Accessed March 31, 2017. http://www.who.int/nutrition/topics/ida/en/
[2] "Ibid."
[3] "Ibid."
[4] "Ibid"
[5] "Ibid"
[6] "Ibid"
----[1] "Ibid".
[2] “Treatments for Nutritional anemia.” Right Diagnosis. Assessed March 31, 2017. http://www.rightdiagnosis.com/n/nutritional_anemia/treatments.htm
----[1] "Ibid".
[2] “What are the symptoms of anemia?” Health Grades, INC. Accessed March 31, 2017. https://www.healthgrades.com/conditions/anemia--symptoms.
[3] "Ibid."
[4] "Ibid."
[5] "Ibid."
[6] "Ibid"
----[1] "Ibid".
[2] "Ibid".
----[1] "Nutritional Anemia." The Free Dictionary. Accessed March 31, 2017. http://medical-dictionary.thefreedictionary.com/nutritionalanemia.
[2] "Ibid".
[3] "Ibid".
[4] "Ibid".
Nutritional anemia refers to types of anemia that can be directly attributed to nutritional disorders.
Examples include Iron deficiency anemia and pernicious anemia.
It is often discussed in a pediatric context.
Hypochromic anemia occurs in patients with hypochromic microcytic anemia with iron overload. The condition is autosomal recessive and is caused by mutations in the SLC11A2 gene. The condition prevents red blood cells from accessing iron in the blood, which causes anemia that is apparent at birth. It can lead to pallor, fatigue, and slow growth. The iron overload aspect of the disorder means that the iron accumulates in the liver and can cause liver impairment in adolescence or early adulthood.
It also occurs in patients with hereditary iron refractory iron-deficiency anemia (IRIDA). Patients with IRIDA have very low serum iron and transferrin saturation, but their serum ferritin is normal or high. The anemia is usually moderate in severity and presents later in childhood.
Hypochromic anemia is also caused by thalassemia and congenital disorders like Benjamin anemia.
Microcytic anemia is not caused by reduced DNA synthesis.
Thalassemia can cause microcytosis. Depending upon how the terms are being defined, thalassemia can be considered a cause of microcytic anemia, or it can be considered a cause of microcytosis but not a cause of microcytic anemia.
There are many causes of microcytosis, which is essentially only a descriptor. Cells can be small because of mutations in the formation of blood cells (hereditary microcytosis) or because they are not filled with enough hemoglobin, as in iron-deficiency-associated microcytosis.
Red blood cells can be characterised by their haemoglobin content as well as by their size. The haemoglobin content is referred to as the cell's colour. Therefore, there are both "normochromic microcytotic red cells" and "hypochromic, microcytotic red cells". The normochromic cells have a normal concentration of haemoglobin, and are therefore 'red enough' while the hypochromic cells do not; thus the value of the mean corpuscular hemoglobin concentration.
Aplastic anemia can be caused by exposure to certain chemicals, drugs, radiation, infection, immune disease; in about half the cases, yet a defintive cause is unknown. It is not a familial line hereditary condition, nor is it contagious. It can be acquired due to exposure to other conditions but if a person develops the condition, their offspring would not develop it by virtue of their gene connection.
Aplastic anemia is also sometimes associated with exposure to toxins such as benzene, or with the use of certain drugs, including chloramphenicol, carbamazepine, felbamate, phenytoin, quinine, and phenylbutazone. Many drugs are associated with aplasia mainly according to case reports, but at a very low probability. As an example, chloramphenicol treatment is followed by aplasia in less than one in 40,000 treatment courses, and carbamazepine aplasia is even rarer.
Exposure to ionizing radiation from radioactive materials or radiation-producing devices is also associated with the development of aplastic anemia. Marie Curie, famous for her pioneering work in the field of radioactivity, died of aplastic anemia after working unprotected with radioactive materials for a long period of time; the damaging effects of ionizing radiation were not then known.
Aplastic anemia is present in up to 2% of patients with acute viral hepatitis.
One known cause is an autoimmune disorder in which white blood cells attack the bone marrow.
Short-lived aplastic anemia can also be a result of parvovirus infection. In humans, the P antigen (also known as globoside), one of the many cellular receptors that contribute to a person's blood type, is the cellular receptor for parvovirus B19 virus that causes erythema infectiosum (fifth disease) in children. Because it infects red blood cells as a result of the affinity for the P antigen, Parvovirus causes complete cessation of red blood cell production. In most cases, this goes unnoticed, as red blood cells live on average 120 days, and the drop in production does not significantly affect the total number of circulating red blood cells. In people with conditions where the cells die early (such as sickle cell disease), however, parvovirus infection can lead to severe anemia.
More frequently parvovirus B19 is associated with aplastic crisis which involves only the red blood cells ( despite the name). Aplastic anemia involves all different cell lines.
In some animals, aplastic anemia may have other causes. For example, in the ferret ("Mustela putorius furo"), it is caused by estrogen toxicity, because female ferrets are induced ovulators, so mating is required to bring the female out of heat. Intact females, if not mated, will remain in heat, and after some time the high levels of estrogen will cause the bone marrow to stop producing red blood cells.
Mild macrocytosis is a common finding associated with rapid blood restoration or production, since in general, "fresh" or newly produced red cells (reticulocytes) are larger than the mean (average) size, due to slow shrinkage of normal cells over a normal red cell circulating lifetime. Thus, chronic obstructive pulmonary disease (COPD), in which red cells are rapidly produced in response to low oxygen levels in the blood, often produces mild macrocytosis. Also, rapid blood replacement from the marrow after a traumatic blood loss, or rapid red blood cell turnover from rapid hemolysis (G6PD deficiency), also often produces mild macrocytosis in the associated anemia.