Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In tennis players, about 39.7% have reported current or previous problems with their elbow. Less than one quarter (24%) of these athletes under the age of 50 reported that the tennis elbow symptoms were "severe" and "disabling," while 42% were over the age of 50. More women (36%) than men (24%) considered their symptoms severe and disabling. Tennis elbow is more prevalent in individuals over 40, where there is about a four-fold increase among men and two-fold increase among women. Tennis elbow equally affects both sexes and, although men have a marginally higher overall prevalence rate as compared to women, this is not consistent within each age group, nor is it a statistically significant difference.
Playing time is a significant factor in tennis elbow occurrence, with increased incidence with increased playing time being greatery for respondents under 40. Individuals over 40 who played over two hours doubled their chance of injury. Those under 40 increased it 3.5 fold compared to those who played less than two hours per day.
Another factor of tennis elbow injury is experience and ability. The proportion of players who reported a history of tennis elbow had an increased number of playing years. As for ability, poor technique increases the chance for injury much like any sport. Therefore, an individual must learn proper technique for all aspects of their sport. The competitive level of the athlete also affects the incidence of tennis elbow. Class A and B players had a significantly higher rate of tennis elbow occurrence compared to class C and novice players. However, an opposite, but not statistically significant, trend is observed for the recurrence of previous cases, with an increasingly higher rate as ability level decreases.
Other ways to prevent tennis elbow:
- Decrease the amount of playing time if already injured or feeling pain in outside part of the elbow.
- Stay in overall good physical shape.
- Strengthen the muscles of the forearm: (pronator quadratus, pronator teres, and supinator muscle)—the upper arm: (biceps, triceps)—and the shoulder (deltoid muscle) and upper back (trapezius). Increased muscular strength increases stability of joints such as the elbow.
- Like other sports, use equipment appropriate to your ability, body size, and muscular strength.
- Avoid any repetitive lifting or pulling of heavy objects (especially over your head)
Vibration dampeners (otherwise known as "gummies") are not believed to be a reliable preventative measure. Rather, proper weight distribution in the racket is thought to be a more viable option in negating shock.
Tendon injury and resulting tendinopathy are responsible for up to 30% of consultations to sports doctors and other musculoskeletal health providers. Tendinopathy is most often seen in tendons of athletes either before or after an injury but is becoming more common in non-athletes and sedentary populations. For example, the majority of patients with Achilles tendinopathy in a general population-based study did not associate their condition with a sporting activity. In another study the population incidence of Achilles tendinopathy increased sixfold from 1979-1986 to 1987-1994. The incidence of rotator cuff tendinopathy ranges from 0.3% to 5.5% and annual prevalence from 0.5% to 7.4%.
The condition is called "Golfer's Elbow" because in making a golf swing this tendon is stressed, especially if a non-overlapping (baseball style) grip is used; many people, however, who develop the condition have never handled a golf club. It is also sometimes called "Pitcher's Elbow" due to the same tendon being stressed by the throwing of objects such as a baseball, but this usage is much less frequent. Other names are "Climber's Elbow" and "Little League Elbow": all of the flexors of the fingers and the pronators of the forearm insert at the medial epicondyle of the humerus to include: pronator teres, flexor carpi radialis, flexor carpi ulnaris, flexor digitorum superficialis, and palmaris longus; making this the most common elbow injury for rock climbers, whose sport is very grip intensive. The pain is normally caused due to stress on the tendon as a result of the large amount of grip exerted by the digits and torsion of the wrist which is caused by the use and action of the cluster of muscles on the condyle of the ulna.
Epicondylitis is much more common on the lateral side of the elbow (tennis elbow), rather than the medial side. In most cases, its onset is gradual and symptoms often persist for weeks before patients seek care. In golfer's elbow, pain at the medial epicondyle is aggravated by resisted wrist flexion and pronation, which is used to aid diagnosis. On the other hand, tennis elbow is indicated by the presence of lateral epicondylar pain precipitated by resisted wrist extension. Although the condition is poorly understood at a cellular and molecular level, there are hypotheses that point to apoptosis and autophagic cell death as causes of chronic lateral epicondylitis. The cell death may decrease the muscle density and cause a snowball effect in muscle weakness - this susceptibility can compromise a muscle's ability to maintain its integrity. So athletes, like pitchers, must work on preventing this cell death via flexibility training and other preventive measures.
Workers in certain fields are at risk of repetitive strains. Most occupational injuries are musculoskeletal disorders, and many of these are caused by cumulative trauma rather than a single event. Miners and poultry workers, for example, must make repeated motions which can cause tendon, muscular, and skeletal injuries.
Golfer's elbow, or medial epicondylitis, is tendinosis of the medial epicondyle on the inside of the elbow. It is in some ways similar to tennis elbow, which affects the outside at the lateral epicondyle.
The anterior forearm contains several muscles that are involved with flexing the digits of the hand, and flexing and pronating the wrist. The tendons of these muscles come together in a common tendinous sheath, which originates from the medial epicondyle of the humerus at the elbow joint. In response to minor injury, or sometimes for no obvious reason at all, this point of insertion becomes inflamed.
The exact etiology of tendinopathy has not been fully elucidated and different stresses may induce varying responses in different tendons. There are multifactorial theories that could include: tensile overload, tenocyte related collagen synthesis disruption, load-induced ischemia, neural sprouting, thermal damage, and adaptive compressive responses. The intratendinous sliding motion of fascicles and shear force at interfaces of fascicles could be an important mechanical factor for the development of tendinopathy and predispose tendons to rupture. Obesity, or more specifically, adiposity or fatness, has also been linked to an increasing incidence of tendinopathy.
The most commonly accepted cause for this condition however is seen to be an overuse syndrome in combination with intrinsic and extrinsic factors leading to what may be seen as a progressive interference or the failing of the innate healing response. Tendinopathy involves cellular apoptosis, matrix disorganization and neovascularization.
Tendinopathy can be induced in animal models by a surgical injury to the tendon. In both sheep shoulder (infraspinatus) and horse forelimb (superficial digitor flexor) tendons, a mid-tendon transection caused pathology in the entire tendon after four and six weeks respectively.
Quinolone antibiotics are associated with increased risk of tendinitis and tendon rupture. A 2013 review found the incidence of tendon injury among those taking fluoroquinolones to be between 0.08 and 0.2%. Fluoroquinolones most frequently affect large load-bearing tendons in the lower limb, especially the Achilles tendon which ruptures in approximately 30 to 40% of cases.
People vary in their tendency to get MSDs. Gender is a factor with a higher rate in women than men. Obesity is also a factor, with overweight individuals having a higher risk of some MSDs, specifically lower back.
Tendinosis of the common extensor tendon of the elbow (“tennis elbow”), as of the Rotator Cuff, is a common cause of pain in the elbow or shoulder.
The general opinion is that tendinosis is due to tendon overuse, and failed healing of the tendon. In addition, the extensor carpi radialis brevis muscle plays a key role.
Tendonitis is a very common, but misleading term. By definition, the suffix "-itis" means "inflammation of". Inflammation is the body's local response to tissue damage which involves red blood cells, white blood cells, blood proteins with dilation of blood vessels around the site of injury. Tendons are relatively avascular.
Corticosteroids are drugs that reduce inflammation. Corticosteroids can be useful to relieve chronic tendinopathy pain, improve function, and reduce swelling in the short term. However, there is a greater risk of long-term recurrence. They are typically injected along with a small amount of a numbing drug called lidocaine. Research shows that tendons are weaker following corticosteroid injections. Tendinitis is still a very common diagnosis, though research increasingly documents that what is thought to be tendinitis is usually tendinosis.
In terms of overuse injuries a British study found that:
- 40 percent occurred in the fingers
- 16 percent in the shoulders
- 12 percent in the elbows
- 5 percent were the knees
- 5 percent back
- 4 percent wrists
One injury that tend to be very common among climbers is Carpal tunnel syndrome. It is found in about 25% of climbers.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
There is a growing consensus that psychosocial factors are another cause of some MSDs. Some theories for this causal relationship found by many researchers include increased muscle tension, increased blood and fluid pressure, reduction of growth functions, pain sensitivity reduction, pupil dilation, body remaining at heightened state of sensitivity. Although research findings are inconsistent at this stage, some of the workplace stressors found to be associated with MSDs in the workplace include high job demands, low social support, and overall job strain. Researchers have consistently identified causal relationships between job dissatisfaction and MSDs. For example, improving job satisfaction can reduce 17-69 per cent of work-related back disorders and improving job control can reduce 37-84 per cent of work-related wrist disorders.
The climbers most prone to injuries are intermediate to expert within lead climbing or bouldering.
Repetitive strain injury (RSI) and associative trauma orders are umbrella terms used to refer to several discrete conditions that can be associated with repetitive tasks, forceful exertions, vibrations, mechanical compression, or sustained/awkward positions. Examples of conditions that may sometimes be attributed to such causes include edema, tendinosis (or less often tendinitis), carpal tunnel syndrome, cubital tunnel syndrome, De Quervain syndrome, thoracic outlet syndrome, intersection syndrome, golfer's elbow (medial epicondylitis), tennis elbow (lateral epicondylitis), trigger finger (so-called stenosing tenosynovitis), radial tunnel syndrome, ulnar tunnel syndrome, and focal dystonia.
Since the 1970s there has been a worldwide increase in RSIs of the arms, hands, neck, and shoulder attributed to the widespread use of typewriters/computers in the workplace that require long periods of repetitive motions in a fixed posture.
Radial Tunnel Syndrome is caused by increased pressure on the radial nerve as it travels from the upper arm (the brachial plexus) to the hand and wrist.
Injuries to the arm, forearm or wrist area can lead to various nerve disorders. One such disorder is median nerve palsy. The median nerve controls the majority of the muscles in the forearm. It controls abduction of the thumb, flexion of hand at wrist, flexion of digital phalanx of the fingers, is the sensory nerve for the first three fingers, etc. Because of this major role of the median nerve, it is also called the eye of the hand. If the median nerve is damaged, the ability to abduct and oppose the thumb may be lost due to paralysis of the thenar muscles. Various other symptoms can occur which may be repaired through surgery and tendon transfers. Tendon transfers have been very successful in restoring motor function and improving functional outcomes in patients with median nerve palsy.
The theory is that the radial nerve becomes irritated and/or inflamed from friction caused by compression by muscles in the forearm.
Some speculate that Radial Tunnel Syndrome is a type of repetitive strain injury (RSI), but there is no detectable pathophysiology and even the existence of this disorder is questioned.
The term "radial tunnel syndrome" is used for compression of the posterior interosseous nerve, a division of the radial nerve, at the lateral intermuscular septum of arm, while "supinator syndrome" is used for compression at the arcade of Frohse.
The "radial tunnel" is the region from the humeroradial joint past the proximal origin of the supinator muscle. Some scientists believe the radial tunnel extends as far as the distal border of the supinator. The radial nerve is commonly compressed within a 5 cm region near the elbow, but it can be compressed anywhere along the forearm if the syndrome is caused by injury (e.g. a fracture that puts pressure on the radial nerve). The radial nerve provides sensation to the skin of posterior arm, posterior and lateral forearm and wrist, and the joints of the elbow, wrist and hand. The nerve also provides sensory branches that travel to the periosteum of the lateral epicondyle, the anterior radiohumeral joint, and the annular ligament. It provides motor function through innervation to most extensor muscles of the posterior arm and forearm. Therefore, it is extremely important in upper body extremity movement and can cause significant pain to patients presenting with radial tunnel syndrome. Unlike carpal tunnel syndrome, radial tunnel syndrome does not present tingling or numbness, since the posterior interosseous nerve mainly affects motor function.
This problem is often caused by: bone tumors, injury (specifically fractures of the forearm), noncancerous fatty tumors (lipomas), and inflammation of surrounding tissue.
Nintendo thumb, also known as gamer's grip, Nintendonitis and similar names, is a video game-related health problem classified as a form of repetitive strain injury (RSI). The symptoms are the blistering, paraesthesia and swelling of the thumbs, mainly through use of the D-pad, though any finger can be affected. This can lead to stress on tendons, nerves and ligaments in the hands, and further onto lateral epicondylitis ("tennis elbow"), tendinitis, bursitis and carpal tunnel syndrome (CTS).
Some of the symptoms are described under trigger finger.
Originally known in a video gaming context as "Leather Thumb", this condition was known to occur frequently among users of 2nd generation video game consoles such as the Intellivision or the Atari 2600 in the late 1970s and early 1980s. The condition was first highlighted when the Nintendo games consoles were released, leading to reported cases of RSI, primarily in children (being one of the primary audiences of early-generation videogames). Later, the controllers for the Sony PlayStation and PlayStation 2 were noted as causing the condition. However, due to the shape, size and extended use of game controllers it is not limited to just those specific ones and can occur in users of any gamepad or joystick. Similar problems have also been observed with the use of mobile phones, and text messaging in particular (see Blackberry thumb).