Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Amyloid purpura affects a minority of individuals with amyloidosis. For example, purpura is present early in the disease in approximately 15% of patients with primary systemic amyloidosis.
The precise cause of amyloid purpura is unknown, but several mechanisms are thought to contribute. One may be a decrease in the level of circulating factor X, a clotting factor necessary for coagulation. The proposed mechanism for this decrease in factor X is that circulating amyloid fibrils bind and inactivate factor X. Another contributing factor may be enhanced fibrinolysis, the breakdown of clots. Subendothelial deposits of amyloid may weaken blood vessels and lead to the extravasation of blood. Amyloid deposits in the gastrointestinal tract and liver may also play a role in the development of amyloid purpura.
Overall prognosis is good in most patients, with one study showing recovery occurring in 94% and 89% of children and adults, respectively (some having needed treatment). In children under ten, the condition recurs in about a third of all cases and usually within the first four months after the initial attack. Recurrence is more common in older children and adults.
In adults, kidney involvement progresses to end-stage renal disease (ESRD) more often than in children. In a UK series of 37 patients, 10 (27%) developed advanced kidney disease. Proteinuria, hypertension at presentation, and pathology features (crescentic changes, interstitial fibrosis and tubular atrophy) predicted progression. About 20% of children that exhibit nephrotic or nephritic features experience long permanent renal impairment.
The findings on renal biopsy correlate with the severity of symptoms: those with asymptomatic hematuria may only have focal mesangial proliferation while those with proteinuria may have marked cellular proliferation or even crescent formation. The number of crescentic glomeruli is an important prognostic factor in determining whether the patient will develop chronic renal disease.
In ESRD, some eventually need hemodialysis or equivalent renal replacement therapy (RRT). If a kidney transplant is found for a patient on RRT, the disease will recur in the graft (transplanted kidney) in about 35% of cases, and in 11%, the graft will fail completely (requiring resumption of the RRT and a further transplant).
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
Due to the rarity of Purpura fulminans and its occurrence in vulnerable patient groups like children research on the condition is very limited and evidence based knowledge is scarce. Currently, there is only one Purpura fulminans related clinical research project, http://www.sapfire-registry.org/, which is registered with clinicaltrials.gov.
Vasculitis secondary to connective tissue disorders. Usually secondary to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), relapsing polychondritis, Behçet's disease, and other connective tissue disorders.
Vasculitis secondary to viral infection. Usually due to hepatitis B and C, HIV, cytomegalovirus, Epstein-Barr virus, and Parvo B19 virus.
Treat the underlying disease . Eg for wegner's treatment is steroids and cyclophosphamide.
Drug-induced purpura is a skin condition that may be related to platelet destruction, vessel fragility, interference with platelet function, or vasculitis.
Purpura are a common and nonspecific medical sign; however, the underlying mechanism commonly involves one of:
- Platelet disorders (thrombocytopenic purpura)
- Primary thrombocytopenic purpura
- Secondary thrombocytopenic purpura
- Post-transfusion purpura
- Vascular disorders (nonthrombocytopenic purpura)
- Microvascular injury, as seen in senile (old age) purpura, when blood vessels are more easily damaged
- Hypertensive states
- Deficient vascular support
- Vasculitis, as in the case of Henoch–Schönlein purpura
- Coagulation disorders
- Disseminated intravascular coagulation (DIC)
- Scurvy (vitamin C deficiency) - defect in collagen synthesis due to lack of hydroxylation of procollagen results in weakened capillary walls and cells
- Meningococcemia
- Cocaine use with concomitant use of the one-time chemotherapy drug and now veterinary deworming agent levamisole can cause purpura of the ears, face, trunk, or extremities, sometimes needing reconstructive surgery. Levamisole is purportedly a common cutting agent.
- Decomposition of blood vessels including purpura is a symptom of acute radiation poisoning in excess of 2 Grays of radiation exposure. This is an uncommon cause in general, but is commonly seen in victims of nuclear disaster.
Cases of psychogenic purpura are also described in the medical literature, some claimed to be due to "autoerythrocyte sensitization". Other studies suggest the local (cutaneous) activity of tissue plasminogen activator can be increased in psychogenic purpura, leading to substantial amounts of localized plasmin activity, rapid degradation of fibrin clots, and resultant bleeding. Petechial rash is also characteristic of a rickettsial infection.
Patients usually present with systemic symptoms with single or multiorgan dysfunction. Common (and nonspecific) complaints include fatigue, weakness, fever, arthralgias, abdominal pain, hypertension, renal insufficiency, and neurologic dysfunction. The following symptoms should raise a strong suspicion of a vasculitis:
- Mononeuritis multiplex. Also known as asymmetric polyneuropathy, in a non-diabetic this is suggestive of vasculitis.
- Palpable purpura. If patients have this in isolation, it is most likely due to cutaneous leukocytoclastic vasculitis. If the purpura is in combination with systemic organ involvement, it is most likely to be Henoch-Schonlein purpura or microscopic polyarteritis.
- Pulmonary-renal syndrome. Individuals who are coughing up blood and have kidney involvement are likely to have granulomatosis with polyangiitis, microscopic polyangiitis, or anti-GBM disease (Goodpasture's syndrome).
Thrombocytopenic purpura are purpura associated with a reduction in circulating blood platelets which can result from a variety of causes, such as kaposi sarcoma.
The three most common forms of amyloidosis are AL, AA, and ATTR amyloidoses. The median age at diagnosis is 64.
In the western hemisphere, AL is the most prevalent, comprising 90% of cases. In the United States it's estimated that there are 1,275 to 3,200 new cases of AL amyloidoses a year.
AA amyloidoses is the most common form in developing countries and can complicate longstanding infections with tuberculosis, osteomyleitis, and bronchiectesis. In the west, AA is more likely to occur from autoimmune inflammatory states. The most common causes of AA amyloidosis in the West are rheumatoid arthritis, inflammatory bowel disease, psoriasis, and familial Mediterranean fever.
People undergoing long term hemodialysis (14–15 years) can develop amyloidosis from accumulation of light chains of the HLA 1 complex which is normally filtered out by the kidneys.
Senile amyloidosis resulting from deposition of normal transthyretin, mainly in the heart, is found in 10–36% of people over 80.
By tradition, the term idiopathic thrombocytopenic purpura is used when the cause is idiopathic. However, most cases are now considered to be immune-mediated.
Another form is thrombotic thrombocytopenic purpura.
Microvascular occlusion refers to conditions that can present with retiform purpura.
It has been suggested that phenylephrine may be a cause.
Purpura is a condition of red or purple discolored spots on the skin that do not blanch on applying pressure. The spots are caused by bleeding underneath the skin usually secondary to vasculitis or dietary deficiency of vitamin C (scurvy). They measure 0.3–1 cm (3–10 mm), whereas petechiae measure less than 3 mm, and ecchymoses greater than 1 cm.
Purpura is common with typhus and can be present with meningitis caused by meningococci or septicaemia. In particular, meningococcus ("Neisseria meningitidis"), a Gram-negative diplococcus organism, releases endotoxin when it lyses. Endotoxin activates the Hageman factor (clotting factor XII), which causes disseminated intravascular coagulation (DIC). The DIC is what appears as a rash on the affected individual.
Based on studies conducted in the United States, the prognosis for individuals with ALECT2 amyloidosis is guarded, particularly because they are elderly and their kidney disease is usually well-advanced at the time of presentation. End-stage renal disease develops in 1 out of 3 patients and has a median renal survival of 62 months. A suggested prognostic tool is to track creatinine levels in ALect2 patients. The attached Figure gives survival plotss for individuals with LECT2 renal amyloidosis and serum creatinine levels less than 2 mg/100 ml versus 2 mg/100 ml or greater than 2 mg/100 ml. The results show that afflicted individuals with lower creatinine levels have a ~four-fold higher survival rate.
Prognosis varies with the type of amyloidosis. Prognosis for untreated AL amyloidosis is poor with median survival of one to two years. More specifically, AL amyloidosis can be classified as stage I, II or III based on cardiac biomarkers like troponin and BNP. Survival diminishes with increasing stage, with estimated survival of 26, 11 and 3.5 months at stages I, II and III, respectively.
Outcomes in a person with AA amyloidosis depend on the underlying disease and correlate with the concentration of serum amyloid A protein.
People with ATTR have better prognosis and may survive for over a decade.
Senile systemic amyloidosis was determined to be the primary cause of death for 70% of people over 110 who have been autopsied.
Familial renal amyloidosis (or familial visceral amyloidosis, or hereditary amyloid nephropathy) is a form of amyloidosis primarily presenting in the kidney.
It is associated most commonly with congenital mutations in the fibrinogen alpha chain and classified as a dysfibrinogenemia (see Hereditary Fibrinogen Aα-Chain Amyloidosis). and, less commonly, with congenital mutations in apolipoprotein A1 and lysozyme.
It is also known as "Ostertag" type, after B. Ostertag, who characterized it in 1932 and 1950.
There is evidence that eating amyloid fibers may lead to amyloidosis. This evidence is based on studies in cattle, chickens, mice, and cheetahs. Thus, in a sense, SAA amyloidosis may be considered a contagious disease, although whether this occurs or is important in the development of naturally occurring amyloidosis remains unknown. Nevertheless, because amyloid fibers can be detected in muscle in low amounts, it raises some concern about whether people could develop amyloidosis as a result of ingesting meat from an animal with the disease.
Heredofamilial amyloidosis is an inherited condition that may be characterized by systemic or localized deposition of amyloid in body tissues.
The median time to progression to end stage renal disease is 2.7 years. After 5 years, about 37% of patients with LCDD are alive and do not have end stage renal disease.
Palpable purpura is a condition where purpura, which constitutes visible non-blanching hemorrhages, are raised and able to be touched or felt upon palpation. It indicates some sort of vasculitis secondary to a serious disease.
Purpura hemorrhagica may be prevented by proper management during an outbreak of strangles. This includes isolation of infected horses, disinfection of fomites, and good hygiene by caretakers. Affected horses should be isolated at least one month following infection. Exposed horses should have their temperature taken daily and should be quarantined if it becomes elevated. Prophylactic antimicrobial treatment is not recommended.
Vaccination can reduce the incidence and severity of the disease. However, horses with high SeM antibody titers are more likely to develop purpura hemorrhagica following vaccination and so these horses should not be vaccinated. Titers may be measured by ELISA.
AA amyloidosis is a complication of a number of inflammatory diseases and infections, although only a small portion of patients with these conditions will go on to develop AA amyloidosis. A natural history study of AA amyloidosis patients published in the New England Journal of Medicine reported a number of conditions associated with AA amyloidosis. The most common presentation of AA amyloidosis is renal in nature, including proteinuria, nephrotic syndrome and progressive development of renal insufficiency leading to End Stage Renal Disease (ESRD) and need for renal replacement therapy (e.g. dialysis or renal transplantation).
- Autoimmune diseases
- Rheumatoid arthritis
- Ankylosing spondylitis
- Crohn's disease and ulcerative colitis
- Chronic infections
- Tuberculosis
- Bronchiectasis
- Chronic osteomyelitis
- Autoinflammatory diseases
- Familial Mediterranean fever (FMF)
- Muckle–Wells syndrome (MWS)
- Cancer
- Hodgkin's lymphoma
- Renal cell carcinoma
- Chronic foreign body reaction
- HIV/AIDS
- Silicone-induced granulomatous reaction