Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Liver transplantation has proven to be effective for ATTR familial amyloidosis due to Val30Met mutation.
Alternatively, a European Medicines Agency approved drug Tafamidis or Vyndaqel now exists which stabilizes transthyretin tetramers comprising wild type and different mutant subunits against amyloidogenesis halting the progression of peripheral neuropathy and autonomic nervous system dysfunction.
Currently there are two ongoing clinical trials undergoing recruitment in the United States and worldwide to evaluate investigational medicines that could possibly treat TTR.
The aggregation of one precursor protein leads to peripheral neuropathy and/or autonomic nervous system dysfunction. These proteins include: transthyretin (ATTR, the most commonly implicated protein), apolipoprotein A1, and gelsolin.
Due to the rareness of the other types of familial neuropathies, transthyretin amyloidogenesis-associated polyneuropathy should probably be considered first.
"FAP-I" and "FAP-II" are associated with transthyretin. (Senile systemic amyloidosis [abbreviated "SSA"] is also associated with transthyretin aggregation.)
"FAP-III" is also known as "Iowa-type", and involves apolipoprotein A1.
"FAP-IV" is also known as "Finnish-type", and involves gelsolin.
Fibrinogen, apolipoprotein A1, and lysozyme are associated with a closely related condition, familial visceral amyloidosis.
AA amyloidosis is a complication of a number of inflammatory diseases and infections, although only a small portion of patients with these conditions will go on to develop AA amyloidosis. A natural history study of AA amyloidosis patients published in the New England Journal of Medicine reported a number of conditions associated with AA amyloidosis. The most common presentation of AA amyloidosis is renal in nature, including proteinuria, nephrotic syndrome and progressive development of renal insufficiency leading to End Stage Renal Disease (ESRD) and need for renal replacement therapy (e.g. dialysis or renal transplantation).
- Autoimmune diseases
- Rheumatoid arthritis
- Ankylosing spondylitis
- Crohn's disease and ulcerative colitis
- Chronic infections
- Tuberculosis
- Bronchiectasis
- Chronic osteomyelitis
- Autoinflammatory diseases
- Familial Mediterranean fever (FMF)
- Muckle–Wells syndrome (MWS)
- Cancer
- Hodgkin's lymphoma
- Renal cell carcinoma
- Chronic foreign body reaction
- HIV/AIDS
- Silicone-induced granulomatous reaction
There is evidence that eating amyloid fibers may lead to amyloidosis. This evidence is based on studies in cattle, chickens, mice, and cheetahs. Thus, in a sense, SAA amyloidosis may be considered a contagious disease, although whether this occurs or is important in the development of naturally occurring amyloidosis remains unknown. Nevertheless, because amyloid fibers can be detected in muscle in low amounts, it raises some concern about whether people could develop amyloidosis as a result of ingesting meat from an animal with the disease.
The cause of IBM is unknown. IBM likely results from the interaction of a number of genetic and environmental factors.
There are two major theories about how sIBM is caused. One hypothesis suggests that the inflammation-immune reaction, caused by an unknown trigger – likely an undiscovered virus or an autoimmune disorder– is the primary cause of sIBM and that the degeneration of muscle fibers and protein abnormalities are secondary features. Despite the arguments "in favor of an adaptive immune response in sIBM, a purely autoimmune hypothesis for sIBM is untenable because of the disease's resistance to most immunotherapy."
The second school of thought advocates the theory that sIBM is a degenerative disorder related to aging of the muscle fibers and that abnormal, potentially pathogenic protein accumulations in myofibrils play a key causative role in sIBM (apparently before the immune system comes into play). This hypothesis emphasizes the abnormal intracellular accumulation of many proteins, protein aggregation and misfolding, proteosome inhibition, and endoplasmic reticulum (ER) stress.
One review discusses the "limitations in the beta-amyloid-mediated theory of IBM myofiber injury."
Dalakas (2006) suggested that a chain of events causes IBM—some sort of virus, likely a retrovirus, triggers the cloning of T cells. These T cells appear to be driven by specific antigens to invade muscle fibers. In people with sIBM, the muscle cells display “flags” telling the immune system that they are infected or damaged (the muscles ubiquitously express MHC class I antigens) and this immune process leads to the death of muscle cells. The chronic stimulation of these antigens also causes stress inside the muscle cell in the endoplasmic reticulum (ER) and this ER stress may be enough to cause a self-sustaining T cell response (even after a virus has dissipated). In addition, this ER stress may cause the misfolding of protein. The ER is in charge of processing and folding molecules carrying antigens. In IBM, muscle fibers are overloaded with these major histocompatibility complex (MHC) molecules that carry the antigen protein pieces, leading to more ER stress and more protein misfolding.
A self-sustaining T cell response would make sIBM a type of autoimmune disorder. When studied carefully, it has not been impossible to detect an ongoing viral infection in the muscles. One theory is that a chronic viral infection might be the initial triggering factor setting IBM in motion. There have been a handful of IBM cases—approximately 15—that have shown clear evidence of a virus called HTLV-1. The HTLV-1 virus can cause leukemia, but in most cases lies dormant and most people end up being lifelong carriers of the virus. One review says that the best evidence points towards a connection with some type of retrovirus and that a retroviral infection combined with immune recognition of the retrovirus is enough to trigger the inflammation process.
- amyloid protein
- The hypothesis that beta amyloid protein is key to IBM has been supported in a mouse model using an Aβ vaccine that was found to be effective against inclusion body myositis in mouse models. Although this vaccine is likely not safe for human use, it still shows that attacking Aβ has efficacy in mice against IBM.
- Following up on earlier leads, the Greenberg group report finding that the protein TDP-43 is a very prominent and highly sensitive and specific feature of IBM. This protein is normally found within the nucleus but in IBM is found in the cytoplasm of the cell. This important advance should help develop a new screening technique for IBM and may provide clues in terms of a therapeutic approach
sIBM is not inherited and is not passed on to the children of IBM patients. There are genetic features that do not directly cause IBM but that appear to predispose a person to getting IBM — having this particular combination of genes increases one's susceptibility to getting IBM. Some 67% of IBM patients have a particular combination of human leukocyte antigen genes in a section of the 8.1 ancestral haplotype in the center of the MHC class II region. sIBM is not passed on from generation to generation, although the susceptibility region of genes may be.
There are also several rare forms of hereditary inclusion body myopathy that are linked to specific genetic defects and that are passed on from generation to generation. Since these forms do not show features of muscle inflammation, they are classified as myopathies rather than forms of myositis. Because they do not display inflammation as a primary symptom, they may in fact be similar, but different diseases to sporadic inclusion body myositis. There are several different types, each inherited in different ways. See hereditary inclusion body myopathy.
A 2007 review concluded there is no indication that the genes responsible for the familial or hereditary conditions are involved in sIBM.
Prognosis varies with the type of amyloidosis. Prognosis for untreated AL amyloidosis is poor with median survival of one to two years. More specifically, AL amyloidosis can be classified as stage I, II or III based on cardiac biomarkers like troponin and BNP. Survival diminishes with increasing stage, with estimated survival of 26, 11 and 3.5 months at stages I, II and III, respectively.
Outcomes in a person with AA amyloidosis depend on the underlying disease and correlate with the concentration of serum amyloid A protein.
People with ATTR have better prognosis and may survive for over a decade.
Senile systemic amyloidosis was determined to be the primary cause of death for 70% of people over 110 who have been autopsied.
The three most common forms of amyloidosis are AL, AA, and ATTR amyloidoses. The median age at diagnosis is 64.
In the western hemisphere, AL is the most prevalent, comprising 90% of cases. In the United States it's estimated that there are 1,275 to 3,200 new cases of AL amyloidoses a year.
AA amyloidoses is the most common form in developing countries and can complicate longstanding infections with tuberculosis, osteomyleitis, and bronchiectesis. In the west, AA is more likely to occur from autoimmune inflammatory states. The most common causes of AA amyloidosis in the West are rheumatoid arthritis, inflammatory bowel disease, psoriasis, and familial Mediterranean fever.
People undergoing long term hemodialysis (14–15 years) can develop amyloidosis from accumulation of light chains of the HLA 1 complex which is normally filtered out by the kidneys.
Senile amyloidosis resulting from deposition of normal transthyretin, mainly in the heart, is found in 10–36% of people over 80.
Median survival for patients diagnosed with AL amyloidosis was 13 months in the early 1990s, but had improved to c. 40 months a decade later.
AL amyloidosis is a rare disease; only 1200 to 3200 new cases are reported each year in the United States. Two thirds of patients with AL amyloidosis are male and less than 5% of patients are under 40 years of age.
Other causes may include:
- Anticonvulsant pharmaceutical drugs, such as topiramate, sultiame, and acetazolamide
- Anxiety and/or panic disorder
- Benzodiazepine withdrawal syndrome
- Beta alanine
- Carpal tunnel syndrome
- Cerebral amyloid angiopathy
- Chiari malformation
- Coeliac disease (celiac disease)
- Complex regional pain syndrome
- Decompression sickness
- Dehydration
- Dextromethorphan (recreational use)
- Fabry disease
- Erythromelalgia
- Fibromyalgia
- Fluoroquinolone toxicity
- Guillain–Barré syndrome (GBS)
- Heavy metals
- Herpes zoster
- Hydroxy alpha sanshool, a component of Sichuan peppers
- Hyperglycemia (high blood sugar)
- Hyperkalemia
- Hyperventilation
- Hypoglycemia (low blood sugar)
- Hypocalcemia, and in turn:
- Hypermagnesemia, a condition in which hypocalcemia itself is typically observed as a secondary symptom
- Hypomagnesemia, often as a result of long term proton-pump inhibitor use
- Hypothyroidism
- Immunodeficiency, such as chronic inflammatory demyelinating polyneuropathy (CIDP)
- Intravenous administering of strong pharmaceutical drugs acting on the central nervous system (CNS), mainly opioids, opiates, narcotics; especially in non-medical use (drug abuse)
- Ketorolac
- Lidocaine poisoning
- Lomotil
- Lupus erythematosus
- Lyme disease
- Menopause
- Mercury poisoning
- Migraines
- Multiple sclerosis
- Nitrous oxide, long-term exposure
- Obdormition
- Pyrethrum and pyrethroid (pesticide)
- Rabies
- Radiation poisoning
- Sarcoidosis
- Scorpion stings
- Spinal disc herniation or injury
- Spinal stenosis
- Stinging nettles
- Syringomyelia
- Transverse myelitis
- Vitamin B deficiency
- Vitamin B deficiency
- Withdrawal from certain selective serotonin reuptake inhibitors (or serotonin-specific reuptake inhibitors) (SSRIs), such as paroxetine or serotonin-norepinephrine reuptake inhibitors (SNRIs) such as venlafaxine
The exact mechanisms of these diseases are not well understood. GNE/MNK a key enzyme in the sialic acid biosynthetic pathway, and loss-of-function mutations in GNE/MNK may lead to a lack of sialic acid, which in turn could affect sialoglycoproteins. GNE knockout mice show problems similar to people with IBM and in people with IBM dystroglycan has been found to lack sialic acid. However, the part of the dystroglycan that is important in muscle function does not seem to be affected. Another protein, neural cell adhesion molecule is under-sialyated in people with IBM, but as of 2016 it had no known role in muscle function.
Wild-type transthyretin amyloid accumulates mainly in the heart, where it causes stiffness and often thickening of its walls, leading consequently to shortness of breath and intolerance to exercise, called diastolic dysfunction. Excessively slow heart rate can also occur, such as in sick sinus syndrome, with ensuing fatigue and dizziness. Wild-type transthyretin deposition is also a common cause of carpal tunnel syndrome in elderly men, which may cause pain, tingling and loss of sensation in the hands. Some patients may develop carpal tunnel syndrome as an initial symptom of wild-type transthyretin amyloid.
There appears to be an increase in the risk for developing hematuria or blood in the urine due to urological lesions.
This disease is endemic in Portuguese locations Póvoa de Varzim and Vila do Conde (Caxinas), with more than 1000 affected people, coming from about 500 families, where 70% of the people develop the illness. ll the analysed Portuguese families presented the same haplotype (haplotype I) associated with the Met 30 mutation. In northern Sweden, more specifically Piteå, Skellefteå and Umeå, 1.5% of the population has the mutated gene. There are many other populations in the world who exhibit the illness after having developed it independently.
The disorder typically affects the heart and its prevalence increases in older age groups. Men are affected much more frequently than women. In fact, up to 25% of men over the age of 80 may have evidence of WTTA.
Patients often present with increased thickness of the wall of the main heart chamber, the left ventricle. People affected by WTT amyloidosis are likely to have required a pacemaker before diagnosis and have a high incidence of a partial electrical blockage of the heart, known as left bundle branch block. Low ECG signals such as QRS complexes are widely considered a marker of cardiac amyloidosis.
A much better survival has been reported for patients with WTTA as opposed to cardiac AL amyloidosis .
Based on studies conducted in the United States, the prognosis for individuals with ALECT2 amyloidosis is guarded, particularly because they are elderly and their kidney disease is usually well-advanced at the time of presentation. End-stage renal disease develops in 1 out of 3 patients and has a median renal survival of 62 months. A suggested prognostic tool is to track creatinine levels in ALect2 patients. The attached Figure gives survival plotss for individuals with LECT2 renal amyloidosis and serum creatinine levels less than 2 mg/100 ml versus 2 mg/100 ml or greater than 2 mg/100 ml. The results show that afflicted individuals with lower creatinine levels have a ~four-fold higher survival rate.
Acroparesthesia is severe pain in the extremities, and may be caused by Fabry disease, a type of sphingolipidosis.
It can also be a sign of hypocalcemia.
The drug tafamidis has completed a phase II/III 18-month-long placebo controlled clinical trial
and these results in combination with an 18-month follow-on study demonstrated that Tafamidis or Vyndaqel slowed progression of FAP, particularly when administered to patients early in the course of FAP. This drug is now approved by the European Medicines Agency.
The US Food and Drug Administration's Peripheral and Central Nervous System Drugs Advisory Committee rejected the drug in June 2012, in a 13-4 vote. The committee stated that there was not enough evidence supporting efficacy of the drug, and requested additional clinical trials.
Most individuals diagnosed with LECT2 amyloidosis in the United States (88%) are of Mexican descent and reside in Southwest region of the United States (New Mexico, Arizona, far Western Texas). Other groups with higher incidence rates of the disorder include First Nation Peoples in Canada, Punjabis, South Asians, Sudanese, Native Americans, and Egyptians. In Egyptians, for example, LECT2 is second most common cause of renal amyloidosis, accounting for nearly 31% of all cases.
ALECT2 amyloidosis is generally diagnosed in individuals between the ages 40 and 90, with a mean age of 67 years old. The disorder commonly presents with renal disease that in general is advanced or at an end stage. Associated signs and symptoms of their renal disease may include fatigue, dehydration, blood in urine, and/or other evidence for the presence of the nephrotic syndrome or renal failure. Further studies may find that these individuals have histological or other evidence of LECT2 amyloid deposition in the liver, lung, spleen, kidney, and/or adrenal glands but nonetheless they rarely show any symptoms or signs attributable to dysfunction in these organs. Unlike many other forms of systemic amyloidosis, LECT2 deposition has not been reported to be deposited in the myocardium or brain of affected individuals. Thus, LECT2 amyloidosis, while classified as a form of systemic amyloidosis, almost exclusively manifests clinically as renal amyloidosis. No familial link has been found in the disorder although there have been several cases described among siblings.
Susceptibility weighted imaging has been proposed as a tool for identifying CAA-related microhemorrhages.
Biopsies also play a role in diagnosing the condition.
The different forms have different mutations and inheritance patterns. See the detailed OMIM descriptions for details (given above).
An average clinical profile from published studies shows that the median onset age for HDLS patients is 44.3 years with a mean disease duration of 5.8 years and mean age of death at 53.2 years. As of 2012, there have been around 15 cases identified with at least 11 sporadic cases of HDLS. HDLS cases have been located in Germany, Norway, Sweden, and the United States, showing an international distribution focusing between Northern Europe and the United States.
Through the study of numerous kindred, it was found that the disease did not occur among just males or females, but rather was evenly distributed indicative of an autosomal rather than a sex-linked genetic disorder. It was also observed that the HDLS cases did not skip generations as it would occur with a recessive inheritance, and as such has been labeled autosomal dominant.
Since this can be caused by the same amyloid protein that is associated with Alzheimer's dementia, brain bleeds are more common in people who have a diagnosis of Alzheimer's Disease, however they can also occur in those who have no history of dementia. The bleeding within the brain is usually confined to a particular lobe and this is slightly different compared to brain bleeds which occur as a consequence of high blood pressure (hypertension) - a more common cause of a hemorrhagic stroke (or bleeding in the brain).
Organ-limited amyloidosis is a category of amyloidosis where the distribution can be associated primarily with a single organ. It is contrasted to systemic amyloidosis, and it can be caused by several different types of amyloid.
In almost all of the organ-specific pathologies, there is significant debate as to whether the amyloid plaques are the causal agent of the disease or instead a downstream consequence of a common idiopathic agent. The associated proteins are indicated in parentheses.
Heredofamilial amyloidosis is an inherited condition that may be characterized by systemic or localized deposition of amyloid in body tissues.