Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In studies of the genetic predisposition of refractive error, there is a correlation between environmental factors and the risk of developing myopia. Myopia has been observed in individuals with visually intensive occupations. Reading has also been found to be a predictor of myopia in children. It has been reported that children with myopia spent significantly more time reading than non-myopic children who spent more time playing outdoors. Socioeconomic status and higher levels of education have also been reported to be a risk factor for myopia.
A determination of the prevalence of anisometropia has several difficulties. First of all, the measurement of refractive error may vary from one measurement to the next. Secondly, different criteria have been employed to define anisometropia, and the boundary between anisometropia and isometropia depend on their definition.
Several studies have found that anisometropia occurs more frequently and tends to be more severe for persons with high ametropia, and that this is particularly true for myopes. Anisometropia follows a U-shape distribution according to age: it is frequent in infants aged only a few weeks, is more rare in young children, comparatively more frequent in teenagers and young adults, and more prevalent after presbyopia sets in, progressively increasing into old age.
One study estimated that 6% of those between the ages of 6 and 18 have anisometropia.
Notwithstanding research performed on the biomechanical, structural and optical characteristics of anisometropic eyes, the underlying reasons for anisometropia are still poorly understood.
Anisometropic persons who have strabismus are mostly far-sighted, and almost all of these have (or have had) esotropia. However, there are indications that anisometropia influences the long-term outcome of a surgical correction of an inward squint, and vice versa. More specifically, for patients with esotropia who undergo strabismus surgery, anisometropia may be one of the risk factors for developing consecutive exotropia and poor binocular function may be a risk factor for anisometropia to develop or increase.
According to an American study nearly three in 10 children (28.4%) between the ages of five and 17 have astigmatism. A recent Brazilian study found that 34% of the students in one city were astigmatic. Regarding the prevalence in adults, a recent study in Bangladesh found that nearly 1 in 3 (32.4%) of those over the age of 30 had astigmatism.
A Polish study published in 2005 revealed "with-the-rule astigmatism" may lead to the onset of myopia.
A number of studies have found the prevalence of astigmatism increases with age.
Between 2 and 5% of the population in western countries have amblyopia. In the U.K., 90% of visual health appointments in the child are concerning amblyopia.
Depending on the chosen criterion for diagnosis, between 1 and 4% of the children have amblyopia.
The number of people globally with refractive errors that have not been corrected was estimated at 660 million (10 per 100 people) in 2013.
The number of people globally with significant refractive errors has been estimated at one to two billion. Rates vary between regions of the world with about 25% of Europeans and 80% of Asians affected. Near-sightedness is one of the most prevalent disorders of the eye. Rates among adults are between 15-49% while rates among children are between 1.2-42%. Far-sightedness more commonly affects young children, whose eyes have yet to grow to their full length, and the elderly, who have lost the ability to compensate with their accommodation system. Presbyopia affects most people over the age of 35, and nearly 100% of people by the ages of 55-65. Uncorrected refractive error is responsible for visual impairment and disability for many people worldwide. It is one of the most common causes of vision loss along with cataracts, macular degeneration, and vitamin A deficiency.
Young children with strabismus normally suppress the visual field of one eye (or part of it), whereas adults who develop strabismus normally do not suppress and therefore suffer from double vision (diplopia). This also means that adults (and older children) have a higher risk of post-operative diplopia after undergoing strabismus surgery than young children. Patients who have undergone strabismus surgery at a young age often have monofixation syndrome (with peripheral binocular fusion and a central suppression scotoma).
Strabismus can be seen in Down syndrome, Loeys-Dietz syndrome, cerebral palsy, and Edwards syndrome. The risk is increased among those with a family history of the condition.
Deprivation amblyopia (amblyopia ex anopsia) results when the ocular media become opaque, such as is the case with congenital cataract or corneal haziness. These opacities prevent adequate visual input from reaching the eye, and disrupt development. If not treated in a timely fashion, amblyopia may persist even after the cause of the opacity is removed. Sometimes, drooping of the eyelid (ptosis) or some other problem causes the upper eyelid to physically occlude a child's vision, which may cause amblyopia quickly. Occlusion amblyopia may be a complication of a hemangioma that blocks some or all of the eye. Other possible causes of deprivation and occlusion amblyopia include obstruction in the vitreous and aphakia. Deprivation amblyopia accounts for less than 3% of all individuals affected by amblyopia.
Suppression may treated with vision therapy, though there is a wide range of opinions on long-term effectiveness between eye care professionals, with little scientific evidence of long-term improvement of suppression, if the underlying cause is not addressed (strabismus, amblyopia, etc.).
Hypertropia may be either congenital or acquired, and misalignment is due to imbalance in extraocular muscle function. The superior rectus, inferior rectus, superior oblique, and inferior oblique muscles affect the vertical movement of the eyes. These muscles may be either paretic, restrictive (fibrosis) or overactive effect of the muscles. Congenital cases may have developmental abnormality due to abnormal muscle structure, usually muscle atrophy / hypertrophy or rarely, absence of the muscle and incorrect placement.
Specific & common causes include:
- Superior oblique Palsy / Congenital fourth nerve palsy
- Inferior oblique overaction
- Brown's syndrome
- Duane's retraction syndrome
- Double elevator palsy
- Fibrosis of rectus muscle in Graves Disease (most commonly inferior rectus is involved)
- Surgical trauma to the vertical muscles (e.g. during scleral buckling surgery or cataract surgery causing iatrogenic trauma to the vertical muscles).
Sudden onset hypertropia in a middle aged or elderly adult may be due to compression of the trochlear nerve and mass effect from a tumor, requiring urgent brain imaging using MRI to localise any space occupying lesion. It could also be due to infarction of blood vessels supplying the nerve, due to diabetes and atherosclerosis. In other instances it may be due to an abnormality of neuromuscular transmission, i.e., Myasthenia Gravis.
People of all ages who have noticeable strabismus may experience psychosocial difficulties. Attention has also been drawn to potential socioeconomic impact resulting from cases of detectable strabismus. A socioeconomic consideration exists as well in the context of decisions regarding strabismus treatment, including efforts to re-establish binocular vision and the possibility of stereopsis recovery.
One study has shown that strabismic children commonly exhibit behaviors marked by higher degrees of inhibition, anxiety, and emotional distress, often leading to outright emotional disorders. These disorders are often related to a negative perception of the child by peers. This is due not only to an altered aesthetic appearance, but also because of the inherent symbolic nature of the eye and gaze, and the vitally important role they play in an individual's life as social components. For some, these issues improved dramatically following strabismus surgery. Notably, strabismus interferes with normal eye contact, often causing embarrassment, anger, and feelings of awkwardness, thereby affecting social communication in a fundamental way, with a possible negative effect on self esteem.
Children with strabismus, particularly those with exotropia (an outward turn), may be more likely to develop a mental health disorder than normal-sighted children. Researchers have theorized that esotropia (an inward turn) was not found to be linked to a higher propensity for mental illness due to the age range of the participants, as well as the shorter follow-up time period; esotropic children were monitored to a mean age of 15.8 years, compared with 20.3 years for the exotropic group. A subsequent study with participants from the same area monitored congenital esotropia patients for a longer time period; results indicated that esotropic patients "were" also more likely to develop mental illness of some sort upon reaching early adulthood, similar to those with constant exotropia, intermittent exotropia, or convergence insufficiency. The likelihood was 2.6 times that of controls. No apparent association with premature birth was observed, and no evidence was found linking later onset of mental illness to psychosocial stressors frequently encountered by those with strabismus.
Investigations have highlighted the impact that strabismus may typically have on quality of life. Studies in which subjects were shown images of strabismic and non-strabismic persons showed a strong negative bias towards those visibly displaying the condition, clearly demonstrating the potential for future socioeconomic implications with regard to employability, as well as other psychosocial effects related to an individual's overall happiness.
Adult and child observers perceived a right heterotropia as more disturbing than a left heterotropia, and child observers perceived an esotropia as "worse" than an exotropia. Successful surgical correction of strabismus—for adult patients as well as children—has been shown to have a significantly positive effect on psychological well-being.
Very little research exists regarding coping strategies employed by adult strabismics. One study categorized coping methods into three subcategories: avoidance (refraining from participation an activity), distraction (deflecting attention from the condition), and adjustment (approaching an activity differently). The authors of the study suggested that individuals with strabismus may benefit from psychosocial support such as interpersonal skills training.
No studies have evaluated whether psychosocial interventions have had any benefits on individuals undergoing strabismus surgery.
Of these, cataract is responsible for >65%, or more than 22 million cases of blindness, and glaucoma is responsible for 6 million cases.
Cataracts: is the congenital and pediatric pathology that describes the greying or opacity of the crystalline lens, which is most commonly caused by intrauterine infections, metabolic disorders, and genetically transmitted syndromes. Cataracts are the leading cause of child and adult blindness that doubles in prevalence with every ten years after the age of 40. Consequently, today cataracts are more common among adults than in children. That is, people face higher chances of developing cataracts as they age. Nonetheless, cataracts tend to have a greater financial and emotional toll upon children as they must undergo expensive diagnosis, long term rehabilitation, and visual assistance. Also, according to the Saudi Journal for Health Sciences, sometimes patients experience irreversible amblyopia after pediatric cataract surgery because the cataracts prevented the normal maturation of vision prior to operation. Despite the great progress in treatment, cataracts remain a global problem in both economically developed and developing countries. At present, with the variant outcomes as well as the unequal access to cataract surgery, the best way to reduce the risk of developing cataracts is to avoid smoking and extensive exposure to sun light (i.e. UV-B rays).
Blindness can occur in combination with such conditions as intellectual disability, autism spectrum disorders, cerebral palsy, hearing impairments, and epilepsy. Blindness in combination with hearing loss is known as deafblindness.
It has been estimated that over half of completely blind people have non-24-hour sleep–wake disorder, a condition in which a person's circadian rhythm, normally slightly longer than 24 hours, is not entrained (synchronized) to the light/dark cycle.
Far-sightedness, also known as hyperopia, is a condition of the eye in which light is focused behind, instead of on, the retina. This results in close objects appearing blurry, while far objects may appear normal. As the condition worsens, objects at all distances may be blurry. Other symptoms may include headaches and eye strain. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus.
The cause is an imperfection of the eyes. Often it occurs when the eyeball is too short, or the lens or cornea is misshapen. Risk factors include a family history of the condition, diabetes, certain medications, and tumors around the eye. It is a type of refractive error. Diagnosis is based on an eye exam.
Management can occur with eyeglasses, contact lenses, or surgery. Glasses are easiest while contact lenses can provide a wider field of vision. Surgery works by changing the shape of the cornea. Far-sightedness primarily affects young children, with rates of 8% at 6 years and 1% at 15 years. It then becomes more common again after the age of 40, affecting about half of people.
Astigmatism is a type of refractive error in which the eye does not focus light evenly on the retina. This results in distorted or blurred vision at all distances. Other symptoms can include eyestrain, headaches, and trouble driving at night. If it occurs early in life it can result in amblyopia.
The cause of astigmatism is unclear. It is believed to be partly related to genetic factors. The underlying mechanism involves an irregular curvature of the cornea or abnormalities in the lens of the eye. Diagnosis is by an eye exam.
Three options exist for the treatment: glasses, contact lenses, and surgery. Glasses are the simplest. Contact lenses can provide a wider field of vision. Refractive surgery permanently changes the shape of the eye.
In Europe and Asia astigmatism affects between 30 and 60% of adults. People of all ages can be affected. Astigmatism was first reported by Thomas Young in 1801.
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
Refractive surgery causes only minimal size differences, similar to contact lenses. In a study performed on 53 children who had amblyopia due to anisometropia, surgical correction of the anisometropia followed by strabismus surgery if required led to improved visual acuity and even to stereopsis in many of the children ("see:" Refractive surgery#Children).
As hyperopia is the result of the visual image being focused behind the retina, it has two main causes:
- Low converging power of eye lens because of weak action of ciliary muscles
- Abnormal shape of the cornea
Far-sightedness is often present from birth, but children have a very flexible eye lens, which helps to compensate. In rare instances hyperopia can be due to diabetes, and problems with the blood vessels in the retina.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
Incomitant esotropias are conditions in which the esotropia varies in size with direction of gaze. They can occur in both childhood and adulthood, and arise as a result of neurological, mechanical or myogenic problems. These problems may directly affect the extra-ocular muscles themselves, and may also result from conditions affecting the nerve or blood supply to these muscles or the bony orbital structures surrounding them. Examples of conditions giving rise to an esotropia might include a VIth cranial nerve (or Abducens) palsy, Duane's syndrome or orbital injury.
Cyclotropia is a form of strabismus in which, compared to the correct positioning of the eyes, there is a of one eye (or both) about the eye's visual axis. Consequently, the visual fields of the two eyes appear tilted relative to each other. The corresponding "latent" condition – a condition in which torsion occurs only in the absence of appropriate visual stimuli – is called cyclophoria.
Cyclotropia is often associated with other disorders of strabism, can result in double vision, and can cause other symptoms, in particular head tilt.
In some cases, subjective and objective cyclodeviation may result from surgery for oblique muscle disorders; if the visual system cannot compensate for it, cyclotropia and rotational double vision (cyclodiplopia) may result. The role of cyclotropia in vision disorders is not always correctly identified. In several cases of double vision, once the underlying cyclotropia was identified, the condition was solved by surgical cyclotropia correction.
Conversely, artificially causing cyclotropia in cats leads to reduced vision acuity, resulting in a defect similar to strabismic amblyopia.
This remains undetermined at the present time. A recent study by Major et al. reports that:
"Prematurity, family history or secondary ocular history, perinatal or gestational complications, systemic disorders, use of supplemental oxygen as a neonate, use of systemic medications, and male sex were found to be significant risk factors for infantile esotropia."
Further recent evidence indicates that a cause for "infantile strabismus" may lie with the input that is provided to the visual cortex. In particular, neonates who suffer injuries that, directly or indirectly, perturb binocular inputs into the primary visual cortex (V1) have a far higher risk of developing strabismus than other infants.
A paper published by Eltern für Impfaufklärung, a German Anti-Vaccination activist group, cites a study by The Robert Koch Institute (RKI), claiming significant correlation between children who received Vaccinations and the onset of cause of Spine, Face & Eye Asymmetry.
Diplopia has a diverse range of ophthalmologic, infectious, autoimmune, neurological, and neoplastic causes.
The number of cases is around 0.5 to 0.7 per 10,000 births, making it a relatively rare condition.
In general, approximately one-third of congenital cataracts are a component of a more extensive syndrome or disease (e.g., cataract resulting from congenital rubella syndrome), one-third occur as an isolated inherited trait, and one-third result from undetermined causes. Metabolic diseases tend to be more commonly associated with bilateral cataracts.