Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Measures to reduce contact between the vesper mouse and humans may have contributed to limiting the number of outbreaks, with no cases identified between 1973 and 1994. Although there are no cures or vaccine for the disease, a vaccine developed for the genetically related Junín virus which causes Argentine hemorrhagic fever has shown evidence of cross-reactivity to Machupo virus, and may therefore be an effective prophylactic measure for people at high risk of infection. Post infection (and providing that the person survives the infection), those that have contracted BHF are usually immune to further infection of the disease.
Investigational vaccines exist for Argentine hemorrhagic fever and RVF; however, neither is approved by FDA or commonly available in the United States.
The structure of the attachment glycoprotein has been determined by X-ray crystallography and this glycoprotein is likely to be an essential component of any successful vaccine.
Five families of RNA viruses have been recognised as being able to cause hemorrhagic fevers.
- The family "Arenaviridae" include the viruses responsible for Lassa fever (Lassa virus), Lujo virus, Argentine (Junin virus), Bolivian (Machupo virus), Brazilian (Sabiá virus), Chapare hemorrhagic fever (Chapare virus) and Venezuelan (Guanarito virus) hemorrhagic fevers.
- The family "Bunyaviridae" include the members of the "Hantavirus" genus that cause hemorrhagic fever with renal syndrome (HFRS), the Crimean-Congo hemorrhagic fever (CCHF) virus from the "Nairovirus" genus, Garissa virus and Ilesha virus from the "Orthobunyavirus" and the Rift Valley fever (RVF) virus from the "Phlebovirus" genus.
- The family "Filoviridae" include Ebola virus and Marburg virus.
- The family "Flaviviridae" include dengue, yellow fever, and two viruses in the tick-borne encephalitis group that cause VHF: Omsk hemorrhagic fever virus and Kyasanur Forest disease virus.
- In September 2012 scientists writing in the journal PLOS Pathogens reported the isolation of a member of the "Rhabdoviridae" responsible for 2 fatal and 2 non-fatal cases of hemorrhagic fever in the Bas-Congo district of the Democratic Republic of Congo. The non-fatal cases occurred in healthcare workers involved in the treatment of the other two, suggesting the possibility of person-to-person transmission. This virus appears to be unrelated to previously known Rhabdoviruses.
The pathogen that caused the cocoliztli epidemics in Mexico of 1545 and 1576 is still unknown.
Preventing Omsk Hemorrhagic Fever consists primarily in avoiding being exposed to tick. Persons engaged in camping, farming, forestry, hunting (especially the Siberian muskrat) are at greater risk and should wear protective clothing or use insect repellent for protection. The same is generally recommended for persons at sheltered locations.
About 15–20% of hospitalized Lassa fever patients will die from the illness. The overall mortality rate is estimated to be 1%, but during epidemics, mortality can climb as high as 50%. The mortality rate is greater than 80% when it occurs in pregnant women during their third trimester; fetal death also occurs in nearly all those cases. Abortion decreases the risk of death to the mother. Some survivors experience lasting effects of the disease, and can include partial or complete deafness.
Because of treatment with ribavirin, fatality rates are continuing to decline.
Omsk hemorrhagic fever is caused by the Omsk hemorrhagic fever virus (OHFV), a member of the Flavivirus family. The virus was discovered by Mikhail Chumakov and his colleagues between 1945 and 1947 in Omsk, Russia. The infection is found in western Siberia, in places including Omsk, Novosibirsk, Kurgan, and Tyumen. The virus survives in water and is transferred to humans via contaminated water or an infected tick.
Severe disease is more common in babies and young children, and in contrast to many other infections, it is more common in children who are relatively well nourished. Other risk factors for severe disease include female sex, high body mass index, and viral load. While each serotype can cause the full spectrum of disease, virus strain is a risk factor. Infection with one serotype is thought to produce lifelong immunity to that type, but only short-term protection against the other three. The risk of severe disease from secondary infection increases if someone previously exposed to serotype DENV-1 contracts serotype DENV-2 or DENV-3, or if someone previously exposed to DENV-3 acquires DENV-2. Dengue can be life-threatening in people with chronic diseases such as diabetes and asthma.
Polymorphisms (normal variations) in particular genes have been linked with an increased risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin, CTLA4, TGFβ, DC-SIGN, PLCE1, and particular forms of human leukocyte antigen from gene variations of HLA-B. A common genetic abnormality, especially in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk. Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection against severe disease in secondary dengue infection.
Treatment is similar to hepatitis B, but due to its high lethality, more aggressive therapeutic approaches are recommended in the acute phase. In absence of a specific vaccine against delta virus, the vaccine against HBV must be given soon after birth in risk groups.
The VHF viruses are spread in a variety of ways. Some may be transmitted to humans through a respiratory route. According to Soviet defector Ken Alibek, Soviet scientists concluded China may have tried to weaponise a VHF virus during the late 1980's but discontinued to do so after an outbreak . The virus is considered by military medical planners to have a potential for aerosol dissemination, weaponizaton, or likelihood for confusion with similar agents that might be weaponized.
Rocky Mountain spotted fever can be a very severe illness and patients often require hospitalization. Because "R. rickettsii" infects the cells lining blood vessels throughout the body, severe manifestations of this disease may involve the respiratory system, central nervous system, gastrointestinal system, or kidneys.
Long-term health problems following acute Rocky Mountain spotted fever infection include partial paralysis of the lower extremities, gangrene requiring amputation of fingers, toes, or arms or legs, hearing loss, loss of bowel or bladder control, movement disorders, and language disorders. These complications are most frequent in persons recovering from severe, life-threatening disease, often following lengthy hospitalizations
AHF is a grave acute disease which may progress to recovery or death in 1 to 2 weeks. The incubation time of the disease is between 10 and 12 days, after which the first symptoms appear: fever, headaches, weakness, loss of appetite and will. These intensify less than a week later, forcing the infected to lie down, and producing stronger symptoms such as vascular, renal, hematological and neurological alterations. This stage lasts about 3 weeks.
If untreated, the mortality of AHF reaches 15–30%. The specific treatment includes plasma of recovered patients, which, if started early, is extremely effective and reduces mortality to 1%.
Ribavirin also has shown some promise in treating arenaviral diseases.
The disease was first detected in the 1950s in the Junín Partido in Buenos Aires, after which its agent, the Junín virus, was named upon its identification in 1958. In the early years, about 1,000 cases per year were recorded, with a high mortality rate (more than 30%). The initial introduction of treatment serums in the 1970s reduced this lethality.
Control of the "Mastomys" rodent population is impractical, so measures focus on keeping rodents out of homes and food supplies, encouraging effective personal hygiene, storing grain and other foodstuffs in rodent-proof containers, and disposing of garbage far from the home to help sustain clean households . Gloves, masks, laboratory coats, and goggles are advised while in contact with an infected person, to avoid contact with blood and body fluids. These issues in many countries are monitored by a department of public health. In less developed countries, these types of organizations may not have the necessary means to effectively control outbreaks.
Researchers at the USAMRIID facility, where military biologists study infectious diseases, have a promising vaccine candidate. They have developed a replication-competent vaccine against Lassa virus based on recombinant vesicular stomatitis virus vectors expressing the Lassa virus glycoprotein. After a single intramuscular injection, test primates have survived lethal challenge, while showing no clinical symptoms.
Prevention depends on control of and protection from the bites of the mosquito that transmits it. The World Health Organization recommends an Integrated Vector Control program consisting of five elements:
1. Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened;
2. Collaboration between the health and other sectors (public and private);
3. An integrated approach to disease control to maximize use of resources;
4. Evidence-based decision making to ensure any interventions are targeted appropriately; and
5. Capacity-building to ensure an adequate response to the local situation.
The primary method of controlling "A. aegypti" is by eliminating its habitats. This is done by getting rid of open sources of water, or if this is not possible, by adding insecticides or biological control agents to these areas. Generalized spraying with organophosphate or pyrethroid insecticides, while sometimes done, is not thought to be effective. Reducing open collections of water through environmental modification is the preferred method of control, given the concerns of negative health effects from insecticides and greater logistical difficulties with control agents. People can prevent mosquito bites by wearing clothing that fully covers the skin, using mosquito netting while resting, and/or the application of insect repellent (DEET being the most effective). However, these methods appear not to be sufficiently effective, as the frequency of outbreaks appears to be increasing in some areas, probably due to urbanization increasing the habitat of "A. aegypti". The range of the disease appears to be expanding possibly due to climate change.
Prevention strategies include reducing the breeding of midges through source reduction (removal and modification of breeding sites) and reducing contact between midges and people. This can be accomplished by reducing the number of natural and artificial water-filled habitats and encourage the midge larvae to grow.
Oropouche fever is present in epidemics so the chances of one contracting it after being exposed to areas of midgets or mosquitoes is rare.
The "Candid #1" vaccine for AHF was created in 1985 by Argentine virologist Dr. Julio Barrera Oro. The vaccine was manufactured by the Salk Institute in the United States, and became available in Argentina in 1990.
"Candid #1" has been applied to adult high-risk population and is 95.5% effective. On 29 August 2006 the Maiztegui Institute obtained certification for the production of the vaccine in Argentina. A vaccination plan is yet to be outlined, but the budget for 2007 allows for 390,000 doses, at AR$8 each (about US$2.6 or €2 at the time). The Institute has the capacity to manufacture, in one year, the 5 million doses required to vaccinate the entire population of the endemic area.
Between 1991 and 2005 more than 240,000 people were vaccinated, achieving a great decrease in the numbers of reported cases (94 suspect and 19 confirmed in 2005).
The Junín vaccine has also shown cross-reactivity with Machupo virus and, as such, has been considered as a potential treatment for Bolivian hemorrhagic fever.
There are only between 500 and 2500 cases of Rocky Mountain spotted fever reported in the United States per year, and in only about 20% can the tick be found.
Host factors associated with severe or fatal Rocky Mountain spotted fever include advanced age, male sex, African or Caribbean background, chronic alcohol abuse, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Deficiency of G6PD is a genetic condition affecting about 12 percent of the Afro-American male population. Deficiency in this enzyme is associated with a high proportion of severe cases of Rocky Mountain spotted fever. This is a rare clinical complication that is often fatal within five days of the onset of the disease.
In the early 1940´s, outbreaks were described in the Mexican states of Sinaloa, Sonora, Durango, and Coahuila driven by dogs and Rhipicephalus sanguineus sensu lato, the brown dog tick. Over the ensuing 100 years case fatality rates were 30%–80%. In 2015, there was an abrupt rise in Sonora cases with 80 fatal cases. From 2003 to 2016, cases increased to 1394 with 247 deaths.
Risk factors independently associated with developing a clinical infection with WNV include a suppressed immune system and a patient history of organ transplantation. For neuroinvasive disease the additional risk factors include older age (>50+), male sex, hypertension, and diabetes mellitus.
A genetic factor also appears to increase susceptibility to West Nile disease. A mutation of the gene "CCR5" gives some protection against HIV but leads to more serious complications of WNV infection. Carriers of two mutated copies of "CCR5" made up 4.0 to 4.5% of a sample of West Nile disease sufferers, while the incidence of the gene in the general population is only 1.0%.
Yellow fever is common in tropical and subtropical areas of South America and Africa. Worldwide, about 600 million people live in endemic areas. The WHO estimates 200,000 cases of disease and 30,000 deaths a year occur; the number of officially reported cases is far lower.
The prime method of spread of the West Nile virus (WNV) is the female mosquito. Only female feeds on blood. In Europe, cats were identified as being hosts for West Nile virus.
The important mosquito vectors vary according to area; in the United States, "Culex pipiens" (Eastern United States, and urban and residential areas of the United States north of 36–39°N), "Culex tarsalis" (Midwest and West), and "Culex quinquefasciatus" (Southeast) are the main vector species.
The mosquito species that are most frequently infected with WNV feed primarily on birds. Different species of mosquitos take a blood meal from different types of vertebrate hosts, Mosquitoes show further selectivity, exhibiting preference for different species of birds. In the United States, WNV mosquito vectors feed preferentially on members of the Corvidae and thrush family. Among the preferred species within these families are the American crow, a corvid, and the American robin ("Turdus migratorius").
Some species of birds develop sufficient viral levels (>~10 log PFU/ml;) after being infected to transmit the infection to biting mosquitoes that in turn go on to infect other birds. In birds that die from WNV, death usually occurs after 4 to 6 days. In mammals and several species of birds, the virus does not multiply as readily and so does not develop high viremia during infection. Mosquitoes biting such hosts are not believed to ingest sufficient virus to become infected, making them so-called dead-end hosts. As a result of the differential infectiousness of hosts, the feeding patterns of mosquitoes play an important role in WNV transmission, and they are partly genetically controlled, even within a species.
Direct human-to-human transmission initially was believed to be caused only by occupational exposure, such as in a laboratory setting, or conjunctive exposure to infected blood. The US outbreak identified additional transmission methods through blood transfusion, organ transplant, intrauterine exposure, and breast feeding. Since 2003, blood banks in the United States routinely screen for the virus among their donors. As a precautionary measure, the UK's National Blood Service initially ran a test for this disease in donors who donate within 28 days of a visit to the United States, Canada, or the northeastern provinces of Italy, and the Scottish National Blood Transfusion Service asks prospective donors to wait 28 days after returning from North America or the northeastern provinces of Italy before donating. There also have been reports of possible transmission of the virus from mother to child during pregnancy or breastfeeding or exposure to the virus in a lab, but these are rare cases and not conclusively confirmed.
Recently, the potential for mosquito saliva to affect the course of WNV disease was demonstrated. Mosquitoes inoculate their saliva into the skin while obtaining blood. Mosquito saliva is a pharmacological cocktail of secreted molecules, principally proteins, that can affect vascular constriction, blood coagulation, platelet aggregation, inflammation, and immunity. It clearly alters the immune response in a manner that may be advantageous to a virus. Studies have shown it can specifically modulate the immune response during early virus infection, and mosquito feeding can exacerbate WNV infection, leading to higher viremia and more severe forms of disease.
The disease develops from March to September, with the highest infections occurring in June. The disease is found almost exclusively in the western United States and Canada, mostly in high mountain areas such as Colorado and Idaho. The CTFV was first isolated from human blood in 1944.
Brazilian hemorrhagic fever (BzHF) is an infectious disease caused by the Sabiá virus, an Arenavirus. The Sabiá virus is one of the arenoviruses from South America to cause hemorrhagic fever. It shares a common progenitor with the Junin virus, Machupo virus, Tacaribe virus, and Guanarito virus. It is an enveloped RNA virus and is highly infectious and lethal. Very little is known about this disease, but it is thought to be transmitted by the excreta of rodents.
There have only been three documented infections of the Sabiá virus, only one of which occurred naturally and the other two cases occurred in the clinical setting. The only naturally occurring case was in 1990, when a female agricultural engineer who was staying in the neighborhood of Jardim Sabiá near São Paulo, Brazil contracted the disease. She presented with hemorrhagic fever and died. Her autopsy showed liver necrosis. A virologist who was studying the woman's disease contracted the virus but survived. Ribavirin was not given in these first two cases. Four years later, in 1994, a researcher was exposed to the virus in a level 3 biohazard facility at Yale University when a centrifuge bottle cracked, leaked, and released aerosolized virus particle. He was successfully treated with ribavirin.
Ribavirin is thought to be effective in treating the illness, similar to other arenaviruses. Compared to the patients who did not receive ribavirin, the patient who was treated with it had a shorter and less severe clinical course. Symptomatic control such as fluids to address dehydration and bleeding may also be required.
The Sabiá virus is a Biosafety Level 4 pathogen.
This virus has also been implicated as a means for bioterrorism, as it can be spread through aerosols.
Venezuelan hemorrhagic fever (VHF) is a zoonotic human illness first identified in 1989. The disease is most prevalent in several rural areas of central Venezuela and is caused by the Guanarito virus (GTOV) which belongs to the Arenaviridae family. The short-tailed cane mouse ("Zygodontomys brevicauda") is the main host for GTOV which is spread mostly by inhalation of aerosolized droplets of saliva, respiratory secretions, urine, or blood from infected rodents. Person-to-person spread is possible, but uncommon.
One study has focused on identifying OROV through the use of RNA extraction from reverse transcription-polymerase chain reaction. This study revealed that OROV caused central nervous system infections in three patients. The three patients all had meningoencephalitis and also showed signs of clear lympho-monocytic cellular pattern in CSF, high protein, and normal to slightly decreased glucose levels indicating they had viral infections. Two of the patients already had underlying infections that can effect the CNS and immune system and in particular one of these patients has HIV/AIDS and the third patient has neurocysticercosis. Two patients were infected with OROV developed meningitis and it was theorized that this is due to them being immunocompromised. Through this it was revealed that it's possible that the invasion of the central nervous system by the oropouche virus can be performed by a pervious blood-brain barrier damage.
Personal prevention of yellow fever includes vaccination and avoidance of mosquito bites in areas where yellow fever is endemic. Institutional measures for prevention of yellow fever include vaccination programmes and measures of controlling mosquitoes. Programmes for distribution of mosquito nets for use in homes are providing reductions in cases of both malaria and yellow fever. Use of EPA-registered insect repellent is recommended when outdoors. Exposure for even a short time is enough for a potential mosquito bite. Long-sleeved clothing, long pants, and socks are useful for prevention. The awareness of peak mosquito exposure is from dusk to dawn. The application of larvicides to water-storage containers can help eliminate potential mosquito breeding sites. Adult mosquitos can be killed through insecticide spray usage, which decreases the transmission of yellow fever.
- Use insect repellent when outdoors such as those containing DEET, picaridin, IR3535, or oil of lemon eucalyptus on exposed skin.
- Wear proper clothing to reduce mosquito bites. When weather permits, wear long sleeves, long pants and socks when outdoors. Mosquitoes may bite through thin clothing, so spraying clothes with repellent containing permethrin or another EPA-registered repellent will give extra protection. Clothing treated with permethrin is commercially available. Mosquito repellents containing permethrin are not approved for application directly to skin.
- The peak biting times for many mosquito species are dusk to dawn. However, "A. aegypti", one of the mosquitoes that transmits yellow fever virus, feeds during the daytime. Staying in accommodations with screened or air-conditioned rooms, particularly during peak biting times, also reduces risk of mosquito bites.
A vaccine has been conditionally approved for use in animals in the US. It has been shown that knockout of the NSs and NSm nonstructural proteins of this virus produces an effective vaccine in sheep as well.