Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In Germany, 90% of cases of infectious enteritis are caused by four pathogens, Norovirus, Rotavirus, "Campylobacter" and "Salmonella". Other common causes of infectious enteritis include bacteria such as "Shigella" and "E. coli," as well as viruses such as adenovirus, astrovirus and calicivirus. Other less common pathogens include "Bacillus cereus, Clostridium perfringens, Clostridium difficile" and "Staphylococcus aureus".
"Campylobacter jejuni" is one of the most common sources of infectious enteritis, and the most common bacterial pathogen found in 2 year old and smaller children with diarrhoea. It has been linked to consumption of contaminated water and food, most commonly poultry and milk. The disease tends to be less severe in developing countries, due to the constant exposure which people have with the antigen in the environment, leading to early development of antibodies.
Rotavirus is responsible for infecting 140 million people and causing 1 million deaths each year, mostly in children younger than 5 years. This makes it the most common cause of severe childhood diarrhoea and diarrhea-related deaths in the world. It selectively targets mature enterocytes in the small intestine, causing malabsorption, as well as inducing secretion of water. It has also been observed to cause villus ischemia, and increase intestinal motility. The net result of these changes is induced diarrhoea.
Enteritis necroticans is an often fatal illness, caused by β-toxin of "Clostridium perfringens". This causes inflammation and segments of necrosis throughout the gastrointestinal tract. It is most common in developing countries, however has also been documented in post-World War II Germany. Risk factors for enteritis necroticans include decreased trypsin activity, which prevent intestinal degradation of the toxin, and reduced intestinal motility, which increases likelihood of toxin accumulation.
Ischemic enteritis is uncommon compared to ischemic colitis due to the highly vascularised nature of the small intestine, allowing for sufficient blood flow in most situations. It develops due to circulatory shock of mesenteric vessels in the absence of major vessel occlusion, often associated with an underlying condition such as hypertension, arrhythmia or diabetes. Thus it has been considered to be associated with atherosclerosis. Surgical treatment is usually required due to the likelihood of stenosis or complete occlusion of the small intestine. Ischemic damage can range from mucosal infarction, which is limited only to the mucosa; mural infarction of the mucosa and underlying submucosa; to transmural infarction of the full thickness of the gastrointestinal wall. Mucosal and mural infarcts in and of themselves may not be fatal, however may progress further to a transmural infarct. This has the potential for perforation of the wall, leading to peritonitis.
To date, the precise causative factor has not been verified, and the disease has been attributed by various sources to viruses, parasites, bacteria, use of antibiotics and sulfonamides, and heavy metal poisoning. Other possible causes include peracute salmonellosis, clostridial enterocolitis, and endotoxemia. "Clostridium difficile" toxins isolated in the horse have a genotype like the current human "epidemic strain", which is associated with human "C. difficile"-associated disease of greater than historical severity. "C. difficile" can cause pseudomembranous colitis in humans, and in hospitalized patients who develop it, fulminant "C. difficile" colitis is a significant and increasing cause of death.
Horses under stress appear to be more susceptible to developing colitis X. Disease onset is often closely associated with surgery or transport. Excess protein and lack of cellulose content in the diet (a diet heavy on grain and lacking adequate hay or similar roughage) is thought to be the trigger for the multiplication of clostridial organisms. A similar condition may be seen after administration of tetracycline or lincomycin to horses. These factors may be one reason the condition often develops in race horses, having been responsible for the deaths of the Thoroughbred filly Landaluce,
the Quarter Horse stallion Lightning Bar,
and is one theory for the sudden death of Kentucky Derby winner Swale.
The link to stress suggests the condition may be brought on by changes in the microflora of the cecum and colon that lower the number of anaerobic bacteria, increase the number of Gram-negative enteric bacteria, and decrease anaerobic fermentation of soluble carbohydrates, resulting in damage to the cecal and colonic mucosa and allowing increased absorption of endotoxins from the lumen of the gut.
The causative agent may be "Clostridium perfringens", type A, but the bacteria are recoverable only in the preliminary stages of the disease.
The suspect toxin could also be a form of "Clostridium difficile". In a 2009 study at the University of Arizona, "C. difficile" toxins A and B were detected, large numbers of "C. difficile" were isolated, and genetic characterization revealed them to be North American pulsed-field gel electrophoresis type 1, polymerase chain reaction ribotype 027, and toxinotype III. Genes for the binary toxin were present, and toxin negative-regulator tcdC contained an 18-bp deletion. The individual animal studied in this case was diagnosed as having peracute typhlocolitis, with lesions and history typical of those attributed to colitis X.
Use of antibiotics may also be associated with some forms of colitis-X. In humans, "C. difficile" is the most serious cause of antibiotic-associated diarrhea, often a result of eradication of the normal gut flora by antibiotics. In one equine study, colitis was induced after pretreatment with clindamycin and lincomycin, followed by intestinal content from horses which had died from naturally occurring idiopathic colitis. (A classic adverse effect of clindamycin in humans is "C. difficile"-associated diarrhea.) In the experiment, the treated horses died. After necropsy, "Clostridium cadaveris" was present, and is proposed as another possible causative agent in some cases of fatal colitis.
Specific types of enterocolitis include:
- necrotizing enterocolitis (most common in premature infants)
- pseudomembranous enterocolitis (also called "Pseudomembranous colitis")
Inflammation can spread to other parts of the gut in patients with typhlitis. The condition can also cause the cecum to become distended and can cut off its blood supply. This and other factors can result in necrosis and perforation of the bowel, which can cause peritonitis and sepsis.
Historically, the mortality rate for typhlitis was as high as 50%, mostly because it is frequently associated with bowel perforation. More recent studies have demonstrated better outcomes with prompt medical management, generally with resolution of symptoms with neutrophil recovery without death
Diseases causing inflammation in the GI tract can lead to blood in the stool. Inflammation can occur anywhere along the GI tract in Crohn's disease, or in the colon if a person has ulcerative colitis.
- Crohns disease
- Ulcerative colitis
This list of diagnoses include diseases in which the wall of the bowel is compromised by disease.
- Peptic ulcer disease—divided into either duodenal or gastric ulcers, most common common causes include:
- Non steroidal anti-inflammatory drug (NSAID)—the use of these medications results in a structural change in the wall of the gut, namely ulcers, and potential blood in the stool.
- "H. pylori" infection—this bacterial infection can erode the wall of the stomach or duodenum, leading to a structural change in the stomach wall and bleeding in the stool.
- Chronic disease
- Diverticulitis and diverticulosis result from an out pouching of the colonic mucosa, or gut wall, leading to a break down of weak gut wall and an increased susceptibility to infection due to the bacteria in the GI tract, thus the potential for vascular compromise, the collection of bacteria in the area of perforation (abscess), the abnormal formation of communication between another part of the hollow GI tract (fistula), or blockage of the bowel (obstruction).
- Meckel's diverticulum is a congenital remnant of the omphalo-mesenteric duct that connected the fetal yolk sac to the intestines which is normal closed off and destroyed during the process of development. If a portion, or all of this duct remains a diverticulum or fistula can result, leading to the potential for a source of bleeding.
Enterocolitis or coloenteritis is an inflammation of the digestive tract, involving enteritis of the small intestine and colitis of the colon. It may be caused by various infections, with bacteria, viruses, fungi, parasites, or other causes. Common clinical manifestations of enterocolitis are frequent diarrheal defecations, with or without nausea, vomiting, abdominal pain, fever, chills, alteration of general condition. General manifestations are given by the dissemination of the infectious agent or its toxins throughout the body, or – most frequently – by significant losses of water and minerals, the consequence of diarrhea and vomiting.
Among the causal agents of acute enterocolitis are:
- bacteria: "Salmonella", "Shigella", "Escherichia coli", "Campylobacter" etc.;
- viruses: enteroviruses, rotaviruses, Norwalk virus, adenoviruses;
- fungi: candidiasis, especially in immunosuppressed patients or who have previously received prolonged antibiotic treatment;
- parasites: "Giardia lamblia" (with high frequency of infestation in the population, but not always with clinical manifestations), "Balantidium coli", "Blastocystis homnis", "Cryptosporidium" (diarrhea in people with immunosuppression), "Entamoeba histolytica" (produces the amebian dysentery, common in tropical areas).
Stercoral perforation is the perforation or rupture of the intestine's walls by its internal contents, such as foreign objects, or, more commonly, by hardened feces (fecalomas) which may form in long constipations or other diseases which cause obstruction of transit, such as Chagas disease, Hirschprung's disease, toxic colitis and megacolon.
Stercoral perforation is a very dangerous, life-threatening situation, as well as a surgical emergency, because the spillage of contaminated intestinal contents into the abdominal cavity leads to peritonitis, a rapid bacteremia (bacterial infection of the blood), with many complications.
The condition is usually caused by Gram-positive enteric commensal bacteria of the gut (gut flora). "Clostridium difficile" is a species of Gram-positive bacteria that commonly causes severe diarrhea and other intestinal diseases when competing bacteria are wiped out by antibiotics, causing pseudomembranous colitis, whereas Clostridium septicum is responsible for most cases of neutropenic enterocolitis.
Typhlitis most commonly occurs in immunocompromised patients, such as those undergoing chemotherapy, patients with AIDS, kidney transplant patients, or the elderly.
Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of amebic liver abscess in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings revealed that the chronic phase of amebic liver abscess in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction in amebic liver abscess.
Enteroinvasive "Escherichia coli" (EIEC) is a type of pathogenic bacteria whose infection causes a syndrome that is identical to shigellosis, with profuse diarrhea and high fever. EIEC are highly invasive, and they use adhesin proteins to bind to and enter intestinal cells. They produce no toxins, but severely damage the intestinal wall through mechanical cell destruction.
It is closely related to "Shigella".
After the "E. coli" strain penetrates through the epithelial wall, the endocytosis vacuole gets lysed, the strain multiplies using the host cell machinery, and extends to the adjacent epithelial cell. In addition, the plasmid of the strain carries genes for a type III secretion system that is used as the virulent factor. Although it is an invasive disease, the invasion usually does not pass the submucosal layer. The similar pathology to shigellosis may be because both strains of bacteria share some virulent factors. The invasion of the cells can trigger a mild form of diarrhea or dysentery, often mistaken for dysentery caused by "Shigella" species. The illness is characterized by the appearance of blood and mucus in the stools of infected individuals or a condition called colitis.
Dysentery caused by EIEC usually occurs within 12 to 72 hours following the ingestion of contaminated food. The illness is characterized by abdominal cramps, diarrhea, vomiting, fever, chills, and a generalized malaise. Dysentery caused by this organism is generally self-limiting with no known complications.
Enterovirulent classes of "E. coli" are referred to as the EEC group (enterovirulent "E. coli"):
1. Enteroinvasive "E. coli" (EIEC) invades (passes into) the intestinal wall to produce severe diarrhea.
2. Enterohemorrhagic "E. coli" (EHEC): A type of EHEC, "E. coli" 0157:H7, can cause bloody diarrhea and hemolytic uremic syndrome (anemia and kidney failure).
3. Enterotoxigenic "E. coli" (ETEC) produces a toxin that acts on the intestinal lining, and is the most common cause of traveler's diarrhea.
4. Enteropathogenic "E. coli" (EPEC) can cause diarrhea outbreaks in newborn nurseries.
5. Enteroaggregative "E. coli" (EAggEC) can cause acute and chronic (long-lasting) diarrhea in children.
It is currently unknown what foods may harbor EIEC, but any food contaminated with human feces from an ill individual, either directly or via contaminated water, could cause disease in others. Outbreaks have been associated with hamburger meat and unpasteurized milk.
Antibiotic-associated diarrhea (AAD) results from an imbalance in the colonic microbiota caused by antibiotic therapy. Microbiota alteration changes carbohydrate metabolism with decreased short-chain fatty acid absorption and an osmotic diarrhea as a result. Another consequence of antibiotic therapy leading to diarrhea is overgrowth of potentially pathogenic organisms such as "Clostridium difficile". It is defined as frequent loose and watery stools with no other complications.
Meta-analyses have concluded that probiotics may protect against antibiotic-associated diarrhea in both children and adults. Evidence is insufficient, however, regarding an effect on rates of "Clostridium difficile" colitis.
However, citing conflicting data in the studies, other sources claim that the use of probiotics has failed thus far to meet the standard of medical care required for evidence-based medicine. Demonstration of the efficacy of probiotics is needed by randomized, double blind, placebo-controlled trials.
Efficacy of probiotic AAD prevention is dependent on the probiotic strain(s) used and on the dosage. Up to a 50% reduction of AAD occurrence has been found. No side-effects have been reported in any of these studies. Caution should, however, be exercised when administering probiotic supplements to immunocompromised individuals or patients who have a compromised intestinal barrier because of the risk of an infection caused by the probiotic supplements.
"Clostridium difficile", also known more commonly as "C. diff", is known to account for 10 to 20 percent of antibiotic-associated diarrhea cases. The reasoning for this, is that the antibiotics administered for the treatment of certain diseases processes such as inflammatory colitis also inadvertently kills a large portion of the gut flora, the normal flora that is usually present within the bowel. With this lower amount of "healthy" bacteria present, the overgrowth of "C. diff" is then responsible "for elaborating the enterotoxin".
Toxic megacolon is mainly seen in ulcerative colitis and pseudomembranous colitis, two chronic inflammations of the colon (and occasionally, in the other type of inflammatory bowel disease, Crohn's disease). Its mechanism is incompletely understood. It is probably due to an excessive production of nitric oxide, at least in ulcerative colitis. The prevalence is about the same for both sexes.
In patients with HIV/AIDS, cytomegalovirus (CMV) colitis is the leading cause of toxic megacolon and emergency laparotomy. CMV may also increase the risk of toxic megacolon in non-HIV/AIDS patients with IBD.
Worldwide in 2004, approximately 2.5 billion cases of diarrhea occurred, which resulted in 1.5 million deaths among children under the age of five. Greater than half of these were in Africa and South Asia. This is down from a death rate of 4.5 million in 1980 for gastroenteritis. Diarrhea remains the second leading cause of infant mortality (16%) after pneumonia (17%) in this age group.
The majority of such cases occur in the developing world, with over half of the recorded cases of childhood diarrhea occurring in Africa and Asia, with 696 million and 1.2 billion cases, respectively, compared to only 480 million in the rest of the world.
Infectious diarrhea resulted in about 0.7 million deaths in children under five years old in 2011 and 250 million lost school days. In the Americas, diarrheal disease accounts for a total of 10% of deaths among children aged 1–59 months while in South East Asia, it accounts for 31.3% of deaths. It is estimated that around 21% of child mortalities in developing countries are due to diarrheal disease.
Treatment for colitis-X usually does not save the horse. The prognosis is average to poor, and mortality is 90% to 100%. However, treatments are available, and one famous horse that survived colitis-X was U.S. Triple Crown winner Seattle Slew, that survived colitis-X in 1978 and went on to race as a four-year-old.
Large amounts of intravenous fluids are needed to counter the severe dehydration, and electrolyte replacement is often necessary. Flunixin meglumine (Banamine) may help block the effects of toxemia. Mortality rate has been theorized to fall to 75% if treatment is prompt and aggressive, including administration of not only fluids and electrolytes, but also blood plasma, anti-inflammatory and analgesic drugs, and antibiotics. Preventing dehydration is extremely important. Nutrition is also important. Either parenteral or normal feeding can be used to support the stressed metabolism of the sick horse. Finally, the use of probiotics is considered beneficial in the restoration of the normal intestinal flora. The probiotics most often used for this purpose contain "Lactobacillus" and "Bifidobacterium".
One of the most common causes of infectious diarrhea, is a lack of clean water. Often, improper fecal disposal leads to contamination of groundwater. This can lead to widespread infection among a population, especially in the absence of water filtration or purification. Human feces contains a variety of potentially harmful human pathogens.
Transmission is fecal-oral and is remarkable for the small number of organisms that may cause disease (10 ingested organisms cause illness in 10% of volunteers, and 500 organisms cause disease in 50% of volunteers). "Shigella" bacteria invade the intestinal mucosal cells but do not usually go beyond the lamina propria. Dysentery is caused when the bacteria escape the epithelial cell phagolysosome, multiply within the cytoplasm, and destroy host cells. Shiga toxin causes hemorrhagic colitis and hemolytic-uremic syndrome by damaging endothelial cells in the microvasculature of the colon and the glomeruli, respectively. In addition, chronic arthritis secondary to "S. flexneri" infection, called reactive arthritis, may be caused by a bacterial antigen; the occurrence of this syndrome is strongly linked to HLA-B27 genotype, but the immunologic basis of this reaction is not understood.
Risperidone, an anti-psychotic medication, can result in megacolon.
Dysentery is initially managed by maintaining fluid intake using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. Ideally, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite and an antibiotic to treat any associated bacterial infection.
Anyone with bloody diarrhea needs immediate medical help. Treatment often starts with an oral rehydrating solution—water mixed with salt and carbohydrates—to prevent dehydration. (Emergency relief services often distribute inexpensive packets of sugars and mineral salts that can be mixed with clean water and used to restore lifesaving fluids in dehydrated children gravely ill from dysentery.)
If "Shigella" is suspected and it is not too severe, the doctor may recommend letting it run its course—usually less than a week. The patient will be advised to replace fluids lost through diarrhea. If the infection is severe, the doctor may prescribe antibiotics, such as ciprofloxacin or TMP-SMX (Bactrim). Unfortunately, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
No vaccine is available. There are several "Shigella" vaccine candidates in various stages of development that could reduce the incidence of dysentery in endemic countries, as well as in travelers suffering from traveler's diarrhea.
Until 1964, all available amoebicides were selective in their sites of action. The development of newer nitro-imidazole derivatives led to Niridazole. It was given in a daily dose of 25–30 mgm. per kg to 50 patients for seven days. The cure rate was found to be 84% with serious side effects in one patient. An Indian study of 30 patients on this drug revealed that it acted as a contact amoebicide and also against the invasive forms.23 The therapeutic action of Ambilhar was found to be significantly better than that produced by a combination of dehydroemetine and chloroquine.
An ameboma, also known as an amebic granuloma, is a rare complication of "Entamoeba histolytica" infection, where in response to the infecting amoeba there is formation of annular colonic granulation, which results in a large local lesion of the bowel.
The exact incidence of ischemic colitis is difficult to estimate, as many patients with mild ischemia may not seek medical attention. Ischemic colitis is responsible for about 1 in 2000 hospital admissions, and is seen on about 1 in 100 endoscopies. Men and women are affected equally; ischemic colitis is a disease of the elderly, with more than 90% of cases occurring in people over the age of 60.
Helminths are extremely successful parasites capable of establishing long-lasting infections within a host. During this time, helminths compete with the host organism's cells for nutrient resources and thus possess the potential to cause harm. However, the number of organisms hosted by individuals undergoing helminthic therapy is very small and any side effects are typically only encountered in the first three months of infection. In the long term, the vast majority of clinically infected individuals are asymptomatic, with no significant nutrient loss. In fact, nutrient uptake can be enhanced in some subjects who are hosting a small number of helminths. If the side effects from helminthic therapy were to become unmanageable, they can be alleviated by the use of anthelminthic medications.[1][7][8] The most common clinical symptoms which may be encountered while undergoing helminthic therapy can include:
- Fatigue
- Gastrointestinal discomfort
- Anemia
- Fever
- Abdominal pain
- Weight loss
- Anorexia
- Diarrhea
- General malaise
In adults, most common causes are hemorrhoids and diverticulosis, both of which are relatively benign; however, it can also be caused by colorectal cancer, which is potentially fatal. In a newborn infant, haematochezia may be the result of swallowed maternal blood at the time of delivery, but can also be an initial symptom of necrotizing enterocolitis, a serious condition affecting premature infants. In babies, haematochezia in conjunction with abdominal pain is associated with intussusception. In adolescents and young adults, inflammatory bowel disease, particularly ulcerative colitis, is a serious cause of haematochezia that must be considered and excluded.
Hematochezia can be due to upper gastrointestinal bleeding. However, as the blood from such a bleed is usually chemically modified by action of acid and enzymes, it presents more commonly as black "tarry" feces known as melena. Haematochezia from an upper gastrointestinal source is an ominous sign, as it suggests a very significant bleed which is more likely to be life-threatening.
Beeturia can cause red colored feces after eating beets because of insufficient metabolism of a red pigment, and is a differential sign that may be mistaken as hematochezia.
Consumption of dragon fruit or pitaya may also cause red discoloration of the stool and sometimes the urine (pseudohematuria). This too, is a differential sign that is sometimes mistaken for hematochezia.
In infants, the Apt test can be used to distinguish fetal hemoglobin from maternal blood.
Other common causes of blood in the stool include:
- Colorectal cancer
- Crohns disease
- Ulcerative colitis
- Other types of inflammatory bowel disease, inflammatory bowel syndrome, or ulceration
- Rectal or anal hemorrhoids or anal fissures, particularly if they rupture or are otherwise irritated
- "Shigella" or shiga toxin producing "E. coli" food poisoning
- Necrotizing enterocolitis
- Diverticulosis
- Salmonellosis
- Upper gastrointestinal bleeding
- Peptic ulcer disease
- Esophageal varices
- Gastric cancer
- Intense exercise, especially a high-impact activity like running in hot weather.