Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
It may be acquired from:
- Diseases. Some of the diseases that present nystagmus as a pathological sign:
- Aniridia
- Toxic or metabolic reasons could be the result of the following:
- Central nervous system (CNS) disorders, such as with a cerebellar problem, the nystagmus can be in any direction "including" horizontal. Purely vertical nystagmus is usually central in origin, but it is also a frequent adverse effect of high phenytoin toxicity. Causes include:
Early onset nystagmus occurs more frequently than acquired nystagmus. It can be insular or accompany other disorders (such as micro-ophthalmic anomalies or Down Syndrome). Early-onset nystagmus itself is usually mild and non-progressive. The affected persons are not normally aware of their spontaneous eye movements, but vision can be impaired depending on the severity of the movements.
Types of early-onset nystagmus include the following:
- Infantile:
- Albinism
- Aniridia
- Bilateral congenital cataract
- Bilateral optic nerve hypoplasia
- Idiopathic
- Leber's congenital amaurosis
- Optic nerve or macular disease
- Persistent tunica vasculosa lentis
- Rod monochromatism
- Visual-motor syndrome of functional monophthalmus
- Latent nystagmus
- Noonan syndrome
- Nystagmus blockage syndrome
X-linked infantile nystagmus is associated with mutations of the gene FRMD7, which is located on the X chromosome.
Infantile nystagmus is also associated with two X-linked eye diseases known as complete congenital stationary night blindness (CSNB) and incomplete CSNB (iCSNB or CSNB-2), which are caused by mutations of one of two genes located on the X chromosome. In CSNB, mutations are found in NYX (nyctalopin). CSNB-2 involves mutations of CACNA1F, a voltage-gated calcium channel that, when mutated, does not conduct ions.
This remains undetermined at the present time. A recent study by Major et al. reports that:
"Prematurity, family history or secondary ocular history, perinatal or gestational complications, systemic disorders, use of supplemental oxygen as a neonate, use of systemic medications, and male sex were found to be significant risk factors for infantile esotropia."
Further recent evidence indicates that a cause for "infantile strabismus" may lie with the input that is provided to the visual cortex. In particular, neonates who suffer injuries that, directly or indirectly, perturb binocular inputs into the primary visual cortex (V1) have a far higher risk of developing strabismus than other infants.
A paper published by Eltern für Impfaufklärung, a German Anti-Vaccination activist group, cites a study by The Robert Koch Institute (RKI), claiming significant correlation between children who received Vaccinations and the onset of cause of Spine, Face & Eye Asymmetry.
A rostral lesion within the midbrain may affect the convergence center thus causing bilateral divergence of the eyes which is known as the WEBINO syndrome (Wall Eyed Bilateral INO) as each eye looks at the opposite "wall".
If the lesion affects the PPRF (or the abducens nucleus) and the MLF on the same side (the MLF having crossed from the opposite side), then the "one and a half syndrome" occurs which, simply put, involves paralysis of all conjugate horizontal eye movements other than abduction of the eye on the opposite side to the lesion.
The disorder is caused by injury or dysfunction in the medial longitudinal fasciculus (MLF), a heavily myelinated tract that allows conjugate eye movement by connecting the paramedian pontine reticular formation (PPRF)-abducens nucleus complex of the contralateral side to the oculomotor nucleus of the ipsilateral side.
In young patients with bilateral INO, multiple sclerosis is often the cause. In older patients with one-sided lesions a stroke is a distinct possibility. Other causes are possible.
The prognosis of a lesion in the visual neural pathways that causes a conjugate gaze palsy varies greatly. Depending on the nature of the lesion, recovery may happen rapidly or recovery may never progress. For example, optic neuritis, which is caused by inflammation, may heal in just weeks, while patients with an ischemic optic neuropathy may never recover.
Clinically Infantile esotropia must be distinguished from:
1. VIth Cranial nerve or abducens palsy
2. Nystagmus Blockage Syndrome
3. Esotropia arising secondary to central nervous system abnormalities (in cerebral palsy for example)
4. Primary Constant esotropia
5. Duane's Syndrome
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
There have been cases of improvement in extra-ocular movement with botulinum toxin injection.
Amaurotic nystagmus is defined as the nystagmus associated with blindness or the central vision defects. It is characterized by the pendular or jerky movements of the eyes in the patients who have visual impairement for a long period of time.
The number of cases is around 0.5 to 0.7 per 10,000 births, making it a relatively rare condition.
Pendular nystagmus is a sinusoidal oscillation, which refers to the waveform of involuntary eye movements that may occur in any direction. It is characterized by the multidimensional slow eye movements of the eyes (1 Hz frequency) with an equal velocity in each direction that resembles the trajectory of a pendulum. These pattern of these movements may differ between the two eyes. Depending upon the pattern of movements, pendular nystagmus has been divided into different subtypes such as congenital nystagmus, acquired pendular nystagmus, and amaurotic nystagmus.
There is no treatment of conjugate gaze palsy itself, so the disease or condition causing the gaze palsy must be treated, likely by surgery. As stated in the causes section, the gaze palsy may be due to a lesion caused by stroke or a condition. Some of the conditions such as Progressive supra nuclear palsy are not curable, and treatment only includes therapy to regain some tasks, not including gaze control. Other conditions such as Niemann-Pick disease type C have limited drug therapeutic options. Stroke victims with conjugate gaze palsies may be treated with intravenous therapy if the patent presents early enough, or with a surgical procedure for other cases.
Colobomas can be associated with a mutation in the "PAX2" gene.
Eye abnormalities have been shown to occur in over 90% of children with fetal alcohol syndrome.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
Diagnosing CVI is difficult. A diagnosis is usually made when visual performance is poor but it is not possible to explain this from an eye examination. Before CVI was widely known among professionals, some would conclude that the patient was faking their problems or had for some reason engaged in self-deception. However, there are now testing techniques that do not depend on the patient's words and actions, such as fMRI scanning, or the use of electrodes to detect responses to stimuli in both the retina and the brain. These can be used to verify that the problem is indeed due to a malfunction of the visual cortex and/or the posterior visual pathway.
Cortical visual impairment (CVI) is a form of visual impairment that is caused by a brain problem rather than an eye problem. (The latter is sometimes termed "ocular visual impairment" when discussed in contrast to cortical visual impairment.) Some people have both CVI and a form of ocular visual impairment.
CVI is also sometimes known as cortical blindness, although most people with CVI are not totally blind. The term neurological visual impairment (NVI) covers both CVI and total cortical blindness. Delayed visual maturation, another form of NVI, is similar to CVI, except the child's visual difficulties resolve in a few months. Though the vision of a person with CVI may change, it rarely if ever becomes totally normal.
The major causes of CVI are as follows: asphyxia, hypoxia (a lack of sufficient oxygen in the body’s blood cells), or ischemia (not enough blood supply to the brain), all of which may occur during the birth process; developmental brain defects; head injury; hydrocephalus (when the cerebrospinal fluid does not circulate properly around the brain, and collects in the head, putting pressure on the brain); a stroke involving the occipital lobe; and infections of the central nervous system, such as meningitis and encephalitis.
The syndrome usually results from single unilateral lesion of the paramedian pontine reticular formation and the ipsilateral medial longitudinal fasciculus. An alternative anatomical cause is a lesion of the abducens nucleus (VI) on one side (resulting in a failure of abduction of the ipsilateral eye and adduction of the contralateral eye = conjugate gaze palsy towards affected side), with interruption of the ipsilateral medial longitudinal fasciculus after it has crossed the midline from its site of origin in the contralateral abducens (VI) nucleus (resulting in a failure of adduction of the ipsilateral eye).
The eye findings of Parinaud's Syndrome generally improve slowly over months, especially with resolution of the causative factor; continued resolution after the first 3–6 months of onset is uncommon. However, rapid resolution after normalization of intracranial pressure following placement of a ventriculoperitoneal shunt has been reported.
Treatment is primarily directed towards etiology of the dorsal midbrain syndrome. A thorough workup, including neuroimaging is essential to rule out anatomic lesions or other causes of this syndrome. Visually significant upgaze palsy can be relieved with bilateral inferior rectus recessions. Retraction nystagmus and convergence movement are usually improved with this procedure as well.
Parinaud's Syndrome results from injury, either direct or compressive, to the dorsal midbrain. Specifically, compression or ischemic damage of the mesencephalic tectum, including the superior colliculus adjacent oculomotor (origin of cranial nerve III) and Edinger-Westphal nuclei, causing dysfunction to the motor function of the eye.
Classically, it has been associated with three major groups:
1. Young patients with brain tumors in the pineal gland or midbrain: pinealoma (intracranial germinomas) are the most common lesion producing this syndrome.
2. Women in their 20s-30s with multiple sclerosis
3. Older patients following stroke of the upper brainstem
However, any other compression, ischemia or damage to this region can produce these phenomena: obstructive hydrocephalus, midbrain hemorrhage, cerebral arteriovenous malformation, trauma and brainstem toxoplasmosis infection. Neoplasms and giant aneurysms of the posterior fossa have also been associated with the midbrain syndrome.
Vertical supranuclear ophthalmoplegia has also been associated with metabolic disorders, such as Niemann-Pick disease, Wilson's disease, kernicterus, and barbiturate overdose.
Acquired achromatopsia/dyschromatopsia is a condition associated with damage to the diencephalon (primarily the thalamus of the mid brain) or the cerebral cortex (the new brain), specifically the fourth visual association area, V4 which receives information from the parvocellular pathway involved in colour processing.
Thalamic achromatopsia/dyschromatopsia is caused by damage to the thalamus; it is most frequently caused by tumor growth since the thalamus is well protected from external damage.
Cerebral achromatopsia is a form of acquired color blindness that is caused by damage to the cerebral cortex of the brain, rather than abnormalities in the cells of the eye's retina. It is most frequently caused by physical trauma, hemorrhage or tumor tissue growth.
Persistent hyperplastic primary vitreous (PHPV), also known as Persistent Fetal Vasculature (PFV), is a rare congenital developmental anomaly of the eye that results
following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It can be present in three forms: purely anterior (persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens), purely posterior (falciform retinal septum and ablatio falcicormis congenita) and a combination of both. Most examples of PHPV are unilateral and non-hereditary. When bilateral, PHPV may follow an autosomal recessive or autosomal dominant inheritance pattern.
Achromatopsia (ACHM), also known as total color blindness, is a medical syndrome that exhibits symptoms relating to at least five conditions. The term may refer to acquired conditions such as cerebral achromatopsia, also known as color agnosia, but it typically refers to an autosomal recessive congenital color vision condition, the inability to perceive color and to achieve satisfactory visual acuity at high light levels (typically exterior daylight). The syndrome is also present in an incomplete form which is more properly defined as dyschromatopsia. It is estimated to affect 1 in 40,000 live births worldwide.
There is some discussion as to whether achromats can see color or not. As illustrated in "The Island of the Colorblind" by Oliver Sacks, some achromats cannot see color, only black, white, and shades of grey. With five different genes currently known to cause similar symptoms, it may be that some do see marginal levels of color differentiation due to different gene characteristics. With such small sample sizes and low response rates, it is difficult to accurately diagnose the 'typical achromatic conditions'. If the light level during testing is optimized for them, they may achieve corrected visual acuity of 20/100 to 20/150 at lower light levels, regardless of the absence of color. One common trait is hemeralopia or blindness in full sun. In patients with achromatopsia, the cone system and fibres carrying color information remain intact. This indicates that the mechanism used to construct colors is defective.
Zonular cataract and nystagmus, also referred as Nystagmus with congenital zonular cataract is a rare congenital disease associated with Nystagmus and zonular cataract of the eye.
Bruns nystagmus is an unusual type of bilateral nystagmus most commonly occurring in patients with cerebellopontine angle tumours. It is caused by the combination of slow, large amplitude nystagmus (gaze paretic nystagmus) when looking towards the side of the lesion, and rapid, small amplitude nystagmus (vestibular nystagmus) when looking away from the side of the lesion. It occurs in 11% of patients with vestibular schwannoma, and occurs mainly in patients with larger tumours (67% of patients with tumours over 3.5 cm diameter). Bruns nystagmus is also associated with an increased incidence of balance disturbance in patients with vestibular schwannoma. It may be caused by the compression of both flocculi, the vestibular part of the cerebellum, and improvement in both the nystagmus and balance problems occur commonly after removal of the tumour.
Bruns nystagmus is named for Ludwig Bruns (1858 – 1915).