Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The early stages of Alzheimer's disease are difficult to diagnose. A definitive diagnosis is usually made once cognitive impairment compromises daily living activities, although the person may still be living independently. The symptoms will progress from mild cognitive problems, such as memory loss through increasing stages of cognitive and non-cognitive disturbances, eliminating any possibility of independent living, especially in the late stages of the disease.
Life expectancy of people with AD is less. Following diagnosis it typically ranges from three to ten years.
Fewer than 3% of people live more than fourteen years. Disease features significantly associated with reduced survival are an increased severity of cognitive impairment, decreased functional level, history of falls, and disturbances in the neurological examination. Other coincident diseases such as heart problems, diabetes or history of alcohol abuse are also related with shortened survival. While the earlier the age at onset the higher the total survival years, life expectancy is particularly reduced when compared to the healthy population among those who are younger. Men have a less favourable survival prognosis than women.
Pneumonia and dehydration are the most frequent immediate causes of death brought by AD, while cancer is a less frequent cause of death than in the general population.
Two main measures are used in epidemiological studies: incidence and prevalence. Incidence is the number of new cases per unit of person–time at risk (usually number of new cases per thousand person–years); while prevalence is the total number of cases of the disease in the population at any given time.
Regarding incidence, cohort longitudinal studies (studies where a disease-free population is followed over the years) provide rates between 10 and 15 per thousand person–years for all dementias and 5–8 for AD, which means that half of new dementia cases each year are AD. Advancing age is a primary risk factor for the disease and incidence rates are not equal for all ages: every five years after the age of 65, the risk of acquiring the disease approximately doubles, increasing from 3 to as much as 69 per thousand person years. There are also sex differences in the incidence rates, women having a higher risk of developing AD particularly in the population older than 85. The risk of dying from Alzheimer's disease is 26% higher among the non-Hispanic white population than among the non-Hispanic black population, whereas the Hispanic population has a 30% lower risk than the non-Hispanic white population.
Prevalence of AD in populations is dependent upon different factors including incidence and survival. Since the incidence of AD increases with age, it is particularly important to include the mean age of the population of interest. In the United States, Alzheimer prevalence was estimated to be 1.6% in 2000 both overall and in the 65–74 age group, with the rate increasing to 19% in the 75–84 group and to 42% in the greater than 84 group. Prevalence rates in less developed regions are lower. The World Health Organization estimated that in 2005, 0.379% of people worldwide had dementia, and that the prevalence would increase to 0.441% in 2015 and to 0.556% in 2030. Other studies have reached similar conclusions. Another study estimated that in 2006, 0.40% of the world population (range 0.17–0.89%; absolute number , range ) were afflicted by AD, and that the prevalence rate would triple and the absolute number would quadruple by 2050.
Familial Alzheimer's disease (FAD) or early onset familial Alzheimer's disease (EOFAD) is an uncommon form of Alzheimer's disease that usually strikes earlier in life, defined as before the age of 65 (usually between 50 and 65 years of age, but can be as early as 15) and is inherited in an autosomal dominant fashion, identified by genetics and other characteristics such as the age of onset. It accounts for approximately half the cases of early-onset Alzheimer's disease. Familial AD requires the patient to have at least one first degree relative with a history of AD. Non-familial cases of AD are referred to as "sporadic" AD, where genetic risk factors are minor or unclear.
While early-onset familial AD is estimated to account for only 3.5% of total Alzheimer's disease, it has presented a useful model in studying various aspects of the disorder. Currently, the early-onset familial AD gene mutations guide the vast majority of animal model based therapeutic discovery and development for AD.
Early-onset Alzheimer's disease, also called early-onset Alzheimer's, or early-onset AD, is Alzheimer's disease diagnosed before the age of 65. It is an uncommon form of Alzheimer's, accounting for only 5-10% of all Alzheimer's cases. Approximately 13% of the cases of early-onset Alzheimer's are familial Alzheimer's disease, where a genetic predisposition leads to the disease. The other incidences of early onset Alzheimer's, however, share the same traits as the 'late onset' form of Alzheimer's disease, and little is understood about how it starts.
Non-familial early onset Alzheimer's can develop in people who are in their thirties or forties, but that is extremely rare. The majority of people with early-onset Alzheimer's are in their fifties or early sixties.
Pick's disease is a term that can be used in two different ways. It has traditionally been used as a term for a group of neurodegenerative diseases with symptoms attributable to frontal and temporal lobe dysfunction. Common symptoms that are noticed early are personality and emotional changes, as well as deterioration of language. This condition is now more commonly called frontotemporal dementia by professionals, and the use of "Pick's disease" as a clinical diagnosis has fallen out of fashion. The second use of the term (and the one now used among professionals) is to mean a specific pathology that is one of the causes of frontotemporal lobar degeneration. These two uses have previously led to confusion among professionals and patients and so its use should be restricted to the specific pathological subtype described below. It is also known as Pick disease and PiD (not to be confused with pelvic inflammatory disease (PID) or Parkinson's disease (PD)). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as "Pick bodies".
Prevalence is estimated to be 0.005%. The age of onset has been found to be under 15 years in 40% of cases while it is between 10 and 14 years in one third of the cases. Females outnumber males, 4 to 1. Only 3% have attacks after age 52.
The symptoms of Pick's disease include difficulty in language and thinking, efforts to dissociate from family, behavioral changes, unwarranted anxiety, irrational fears, CBD (Compulsive buying disorder, or oniomania), impaired regulation of social conduct (e.g., breaches of etiquette, vulgar language, tactlessness, , misperception), passivity, low motivation (aboulia), inertia, over-activity, pacing and wandering. It is a characteristic of Pick’s disease that dysfunctional, argumentative, or hostile social conduct is initially exhibited towards family members and not initially exhibited in a workplace or neutral environment. The changes in personality allow doctors to distinguish between Pick's disease and Alzheimer's disease. Pick's disease is one of the causes of the clinical syndrome of frontotemporal lobar degeneration which has three subtypes. Pick's disease pathology is associated more with the frontotemporal dementia and progressive nonfluent aphasia subtypes than the semantic dementia subtype.
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.
Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.
Binswanger's disease, also known as subcortical leukoencephalopathy, is a form of small vessel vascular dementia caused by damage to the white brain matter. White matter atrophy can be caused by many circumstances including chronic hypertension as well as old age. This disease is characterized by loss of memory and intellectual function and by changes in mood. These changes encompass what are known as executive functions of the brain. It usually presents between 54 and 66 years of age, and the first symptoms are usually mental deterioration or stroke.
It was described by Otto Binswanger in 1894, and Alois Alzheimer first used the phrase "Binswanger's disease" in 1902. However, Olszewski is credited with much of the modern-day investigation of this disease which began in 1962.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
Binswanger's disease has no cure and has been shown to be the most severe impairment of all of the vascular dementias. The best way to manage the vascular risk factors that contribute to poor perfusion in the brain is to treat the cause, such as chronic hypertension or diabetes. It has been shown that current Alzheimer’s medication, donepezil (trade name Aricept), may help Binswanger’s Disease patients as well . Donepezil increases the acetylcholine in the brain through a choline esterase inhibitor which deactivates the enzyme that breaks down acetylcholine. Alzheimer as well as Binswanger patients have low levels of acetylcholine and this helps to restore the normal levels of neurotransmitters in the brain. This drug may improve memory, awareness, and the ability to function. If no medical interception of the disease is performed then the disease will continue to worsen as the patient ages due to the continuing atrophy of the white matter from whatever was its original cause.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
Different genetic causes and types of Leigh syndrome have different prognoses, though all are poor. The most severe forms of the disease, caused by a full deficiency in one of the affected proteins, cause death at a few years of age. If the deficiency is not complete, the prognosis is somewhat better and an affected child is expected to survive 6–7 years, and in rare cases, to their teenage years.
The prevalence of MCI varies by age. The prevalence of MCI among different age groups is as follows: 6.7% for ages 60–64; 8.4% for ages 65–69, 10.1% for ages 70–74, 14.8% for ages 75–79, and 25.2% for ages 80–84. After a two-year follow-up, the cumulative incidence of dementia among individuals who are over 65 years old and were diagnosed with MCI was found to be 14.9%.
Globally, approximately 16% of the population over the age of 70 experiences some type of mild cognitive impairment.
Friedreich's ataxia is the most prevalent inherited ataxia, affecting about 1 in 50,000 people in the United States. Males and females are affected equally. The estimated carrier prevalence is 1:110.
A 1984 Canadian study was able to trace 40 cases of classical Friedreich's disease from 14 French-Canadian kindreds previously thought to be unrelated to one common ancestral couple arriving in New France in 1634: Jean Guyon and Mathurine Robin.
The exact incidence of MELAS is unknown. It is one of the more common conditions in a group known as mitochondrial diseases. Together, mitochondrial diseases occur in about 1 in 4,000 people.
A Mitochondrial encephalomyopathy is a form of encephalomyopathy that is associated with a mitochondrial disease.
Examples include MELAS and MERRF. These conditions can sometimes present together.
KSS is sometimes included in this category, but it is not included in this category in MeSH.
Transneuronal degeneration is the death of neurons resulting from the disruption of input from or output to other nearby neurons. It is an active excitotoxic process when a neuron is overstimulated by a neurotransmitter (most commonly glutamate) causing the dysfunction of that neuron (either damaging it or killing it) which drives neighboring neurons into metabolic deficit, resulting in rapid, widespread loss of neurons. This can be either anterograde or retrograde, indicating the direction of the degeneration relative to the original site of damage (see types). There are varying causes for transneuronal degeneration such as brain lesions, disconnection syndromes, respiratory chain deficient neuron interaction, and lobectomies. Although there are different causes, transneuronal degeneration generally results in the same effects (whether they be cellular, dendritic, or axonal) to varying degrees. Transneuronal degeneration is thought to be linked to a number of diseases, most notably Huntington's disease and Alzheimer's disease, and researchers recently have been performing experiments with monkeys and rats, monitoring lesions in different parts of the body to study more closely how exactly the process works.
According to some experts, mild cognitive impairment (MCI) may be caused due to alteration in the brain triggered during early stages of Alzheimer’s disease or other forms of dementia. However, exact causes of MCI are still unknown.
Risk factors of both dementia and MCI are considered to be the same. They are ageing, genetic (heredity) cause of Alzheimer’s or other dementia, and risk of cardiovascular disease.
Sporadic hemiplegic migraine (SHM) is a form of hemiplegic migraine headache isolated cases of which are observed. It is a rare disease. It is considered to be a separate type of migraine.
About 1 in 4,000 children in the United States will develop mitochondrial disease by the age of 10 years. Up to 4,000 children per year in the US are born with a type of mitochondrial disease. Because mitochondrial disorders contain many variations and subsets, some particular mitochondrial disorders are very rare.
The average number of births per year among women at risk for transmitting mtDNA disease is estimated to approximately 150 in the United Kingdom and 800 in the United States.
Friedreich's ataxia is an autosomal recessive inherited disease that causes progressive damage to the nervous system. It manifests in initial symptoms of poor coordination such as gait disturbance; it can also lead to scoliosis, heart disease and diabetes, but does not affect cognitive function. The disease is progressive, and ultimately a wheelchair is required for mobility. Its incidence in the general population is roughly 1 in 50,000.
The particular genetic mutation (expansion of an intronic GAA triplet repeat in the FXN gene) leads to reduced expression of the mitochondrial protein frataxin. Over time this deficiency causes the aforementioned damage, as well as frequent fatigue due to effects on cellular metabolism.
The ataxia of Friedreich's ataxia results from the degeneration of nervous tissue in the spinal cord, in particular sensory neurons essential (through connections with the cerebellum) for directing muscle movement of the arms and legs. The spinal cord becomes thinner and nerve cells lose some of their myelin sheath (the insulating covering on some nerve cells that helps conduct nerve impulses).
The condition is named after the German physician Nikolaus Friedreich, who first described it in the 1860s.
In medicine, proteopathy (Proteo- ["pref". protein]; -pathy ["suff". disease]; proteopathies "pl".; proteopathic "adj".) refers to a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body. Often the proteins fail to fold into their normal configuration; in this misfolded state, the proteins can become toxic in some way (a gain of toxic function) or they can lose their normal function. The proteopathies (also known as proteinopathies, protein conformational disorders, or protein misfolding diseases) include such diseases as Creutzfeldt–Jakob disease and other prion diseases, Alzheimer's disease, Parkinson's disease, amyloidosis, and a wide range of other disorders (see List of Proteopathies).
The concept of proteopathy can trace its origins to the mid-19th century, when, in 1854, Rudolf Virchow coined the term amyloid ("starch-like") to describe a substance in cerebral corpora amylacea that exhibited a chemical reaction resembling that of cellulose. In 1859, Friedreich and Kekulé demonstrated that, rather than consisting of cellulose, "amyloid" actually is rich in protein. Subsequent research has shown that many different proteins can form amyloid, and that all amyloids have in common birefringence in cross-polarized light after staining with the dye Congo Red, as well as a fibrillar ultrastructure when viewed with an electron microscope. However, some proteinaceous lesions lack birefringence and contain few or no classical amyloid fibrils, such as the diffuse deposits of Aβ protein in the brains of Alzheimer patients. Furthermore, evidence has emerged that small, non-fibrillar protein aggregates known as oligomers are toxic to the cells of an affected organ, and that amyloidogenic proteins in their fibrillar form may be relatively benign.
The greatest risk factor for neurodegenerative diseases is aging. Mitochondrial DNA mutations as well as oxidative stress both contribute to aging. Many of these diseases are late-onset, meaning there is some factor that changes as a person ages for each disease. One constant factor is that in each disease, neurons gradually lose function as the disease progresses with age.