Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Though the prevalence of Angelman syndrome is not precisely known, there are some estimates. The best data available are from studies of school age children, ages 6–13 years, living in Sweden and from Denmark where the diagnosis of AS children in medical clinics was compared to an 8-year period of about 45,000 births. The Swedish study showed an AS prevalence of about 1/20,000 and the Danish study showed a minimum AS prevalence of about 1/10,000.
PWS affects approximately 1 in 10,000 to 1 in 25,000 newborns. There are more than 400,000 people who live with PWS around the world.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
The incidence rate of ATR-16 syndrome is not easy to estimate and it is thought to be underdiagnosed. Scientists have described more than 20 cases as of 2013.
The syndrome primarily affects young males. Preliminary studies suggest that prevalence may be 1.8 per 10,000 live male births. 50% of those affected do not live beyond 25 years of age, with deaths attributed to the impaired immune function.
The estimated prevalence of Jacobsen syndrome is believed to be approximately 1 out of every 100,000 births. For reasons unknown females are twice as likely to have Jacobsen Syndrome than males. No preference for any race or ethnicity has been reported so far.
GMS syndrome is a syndrome characterised by goniodysgenesis, intellectual disability, and short stature.
PWS is commonly associated with development of strabismus. In one study, over 50% of patients had strabismus, mainly esotropia.
The severity of the symptoms associated with Angelman syndrome varies significantly across the population of those affected. Some speech and a greater degree of self-care are possible among the least profoundly affected. Walking and the use of simple sign language may be beyond the reach of the more profoundly affected. Early and continued participation in physical, occupational (related to the development of fine-motor control skills), and communication (speech) therapies are believed to significantly improve the prognosis (in the areas of cognition and communication) of individuals affected by AS. Further, the specific genetic mechanism underlying the condition is thought to correlate to the general prognosis of the affected person. On one end of the spectrum, a mutation to the UBE3A gene is thought to correlate to the least affected, whereas larger deletions on chromosome 15 are thought to correspond to the most affected.
The clinical features of Angelman syndrome alter with age. As adulthood approaches, hyperactivity and poor sleep patterns improve. The seizures decrease in frequency and often cease altogether and the EEG abnormalities are less obvious. Medication is typically advisable to those with seizure disorders. Often overlooked is the contribution of the poor sleep patterns to the frequency and/or severity of the seizures. Medication may be worthwhile to help deal with this issue and improve the prognosis with respect to seizures and sleep. Also noteworthy are the reports that the frequency and severity of seizures temporarily escalate in pubescent Angelman syndrome girls, but do not seem to affect long-term health.The facial features remain recognizable with age, but many adults with AS look remarkably youthful for their age.
Puberty and menstruation begin at around the average age. Sexual development is thought to be unaffected, as evidenced by a single reported case of a woman with Angelman syndrome conceiving a female child who also had Angelman syndrome.
The majority of those with AS achieve continence by day and some by night. Angelman syndrome is not a degenerative syndrome, and thus people with AS may improve their living skills with support.
Dressing skills are variable and usually limited to items of clothing without buttons or zippers. Most adults can eat with a knife or spoon and fork, and can learn to perform simple household tasks. General health is fairly good and life-span near average. Particular problems which have arisen in adults are a tendency to obesity (more in females), and worsening of scoliosis if it is present. The affectionate nature which is also a positive aspect in the younger children may also persist into adult life where it can pose a problem socially, but this problem is not insurmountable.
Individuals with Dup15q syndrome are at high risk for epilepsy, autism, and intellectual disability. Motor impairments are very common in individuals with the disorder. Rates of epilepsy in children with isodicentric duplications are higher than in children with interstitial duplications. A majority of patients with either duplication type (isodicentric or interstitial) have a history of gastrointestinal problems.
A study at the University of California, Los Angeles (UCLA) of 13 children with Dup15q syndrome and 13 children with nonsyndromic ASD (i.e., autism not caused by a known genetic disorder) found that, compared to children with nonsyndromic autism, children with Dup15q had significantly lower autism severity as measured by the Autism Diagnostic Observation Schedule (ADOS) (all children in the study met diagnostic criteria for ASD). However, children with Dup15q syndrome had significantly greater motor impairment and impairment of daily living skills than children in the nonsyndromic ASD group. Within the Dup15q syndrome cohort, children with epilepsy had greater cognitive impairment.
Dup15q syndrome is the common name for chromosome 15q11.2-q13.1 duplication syndrome. This is a neurodevelopmental disorder, caused by the partial duplication of Chromosome 15, that confers a strong risk for autism spectrum disorder, epilepsy, and intellectual disability. It is the most common genetic cause of autism, accounting for approximately 1-3% of cases. Dup15q syndrome includes both interstitial duplications and isodicentric duplications (i.e., Idic15) of 15q11.2-13.1.
Important genes likely involved in the etiology of Dup15q syndrome include "UBE3A", "GABRA5", "GABRB3", and "GABRG3". "UBE3A" is a ubiquitin-protein ligase that is involved in targeting proteins for degradation and plays an important role in synapse function. "GABRA5", "GABRB3", and "GABRG3" are gamma aminobutyric acid type A (GABA) receptor subunit genes and are likely important in Dup15q syndrome given the established role of GABA in the etiologies of autism and epilepsy.
With appropriate treatment and management, patients with Weaver syndrome appear to do well, both physically and intellectually, throughout their life and have a normal lifespan. Their adult height is normal as well.
Hennekam syndrome also known as intestinal lymphagiectasia–lymphedema–mental retardation syndrome, is an autosomal recessive disorder consisting of intestinal lymphangiectasia, facial anomalies, peripheral lymphedema, and mild to moderate levels of growth and intellectual disability.
It is also known as "lymphedema-lymphangiectasia-mental retardation syndrome".
In a subset of patients it is associated with CCBE1 according research published by its namesake, Raoul Hennekam. Other causal mutations were found in the FAT4 gene. Previously, mutations in the FAT4 gene had been only associated with van Maldergem syndrome. The molecular mechanism of the lymphedema phenotype in CCBE1-associated cases was identified as a diminished ability of the mutated CCBE1 to accelerate and focus the activation of the primary lymphangiogenic growth factor VEGF-C.
Treatment with isotretinoin may induce substantial resolution of skin lesions, but the risk of secondary infection remains.
Jacobsen Syndrome is caused due to deletion of genetic material from the long arm of chromosome 11. The size of deletion may vary across patients but the deletion always occurs at the end terminal of the q arm of chromosome 11. There are three ways in which the deletion could occur:
de novo deletion- this is a random event that occurred during the formation of the sperm or the egg or during the cell division in the embryonic stage, where genes from chromosome 11 get deleted.
Imbalanced translocation- in this case a parent with balanced translocation or other types of chromosomal rearrangement can pass on these genes to their children which further results in an imbalanced translocation. In this case the affected children have deletions on chromosome 11 as well as some extra genetic material from another chromosome.
Ring chromosome 11- in this case genetic material from both long and short arm of the chromosome get deleted and the remaining part joins together and forms a ring like structure. Here the affected person would have symptoms associated with both 11q and 11p deletion.
Affected individuals have a somewhat shortened lifespan. The maximum described lifespan is 67 years. Adults with 13q deletion syndrome often need support services to maintain their activities of daily living, including adult day care services or housing services.
Weaver syndrome and Sotos syndrome are often mistaken for one another due to their significant phenotypic overlap and similarities. Clinical features shared by both syndromes include overgrowth in early development, advanced bone age, developmental delay, and prominent macrocephaly. Mutations in the NSD1 gene may also be another cause for confusion. The NSD1 gene provides instructions for making a protein that is involved in normal growth and development. Deletions and mutations in the NSD1 gene is a common cause for patients with Sotos syndrome and in some cases for Weaver syndrome as well.
Features distinguishing Weaver syndrome from Sotos syndrome include broad forehead and face, ocular hypertelorism, prominent wide philtrum, micrognathia, deep-set nails, retrognathia with a prominent chin crease, increased prenatal growth, and a carpal bone age that is greatly advanced compared to metacarpal and phalangeal bone age.
There is no specific treatment for micro syndrome, but there are ways to help the disorders, and illnesses that come with it. Many individuals with Micro Syndrome need permanent assistance from their disorders and inabilities to move and support themselves. Seizures are not uncommon and patients should get therapy to help control them, and many patients also require wheelchairs to move, so an assistant would be needed at all times.
Those with micro syndrome are born appearing normal. At the age of one, mental and physical delays become apparent, along with some limb spasms. By the age of eight micro syndrome has already set in, and the patient will have joint contractures, Ocular Atrophy will become noticeable, the patient will most likely lose ability to walk, speak, and sometimes move at all.
This disorder affects all demographics equally. The two families that were studied are of European ancestry. Wilson–Turner syndrome is considered to be a rare disease because it affects one individual out of one million.
Bohring–Opitz syndrome (BOS) is a medical syndrome caused by a mutation in the ASXL1 gene. It is diagnosed by genetic testing and is characterised by characteristic craniofacial appearance, fixed contractures of the upper limbs, abnormal posture, feeding difficulties, intellectual disability, small size at birth, and failure to thrive. Some of these features are shared with other genetic syndromes.
Genetically, de novo truncating mutations in ASXL1 have been shown to account for approximately 50% of Bohring–Opitz syndrome cases.
The syndrome is extremely rare, with fewer than 80 known cases worldwide. The leading cause of death is respiratory infections. Children with BOS can have feeding difficulties, recurring respiratory infections, sleep apnea, developmental delay, failure to thrive, abnormal hair density and length, Wilm’s Tumors, brain abnormalities, silent aspiration, and other issues.
Unlike Borjeson-Forssman-Lehmann syndrome, a disorder that was determined to be very similar to WTS, the individuals with Wilson–Turner syndrome do not develop cataracts or hypermetropia later in life. By far, the most debilitating part of this disorder is intellectual disability. Many of the other symptoms are more easily managed through hormone treatment, proper diet and exercise, and speech therapy.
Distal trisomy 10 is a rare chromosomal disorder that causes several physical defects and intellectual disability.
Humans, like all sexually reproducing species, have somatic cells that are in diploid [2N] state, meaning that N represent the number of chromosomes, and 2 the number of their copies. In humans, there are 23 chromosomes, but there are two sets of them, one from mother and one from father, totaling in 46, that are arranged according to their size, function and genes they carry. Each cell is supposed to have two of each, but sometimes due to mutations or malfunctions during cell division, mistakes are made that cause serious health problems. One such error is the cause of Distal trisomy 10q disorder.
Each chromosome has two arms, labeled p (for petite, or short) and q (for long). If both arms are equal in length, the chromosome is said to be metacentric. If arms' lengths are unequal, chromosome is said to be submetacentric, and if p arm is so short that is hard to observe, but still present, then the chromosome is acrocentric. In Distal Trisomy 10q disorder, end or distal portion of the q (long) arm of the chromosome number 10 appears to be present three times, rather than two times as it is supposed to be. This extra arm results in chromosome 10 trisomy, meaning that three arms are present. Depending on the length of the aberrant arm, the severity can vary from case to case. Often the source of this chromosomal error is a translocation in one of the parents. Sometimes it occurs spontaneously, in which case it is termed "de novo".
This syndrome has a large range of outcomes depending on how much chromosomal material is involved. Outcomes include: very slow postnatal growth, hypotonia, lack of coordination skills and mild to severe cases of intellectual disability, digestive issues, and heart and kidney problems. Individuals with this disorder can also be distinguished by their facial features. Number of support groups do exist in the United States, where affected families can meet and discuss problems they encounter, possible treatments and can find emotional support.
ATR-16 syndrome is caused by a deletion of part of chromosome 16, from p13.3 (a band on the short end of the chromosome) to the end of the chromosome. These can either be due to a balanced translocation or a de novo deletion. The genes affected include hemoglobin, alpha 1 (HBA1) and hemoglobin, alpha 2 (HBA2).
M2DS is one of the several types of X-linked intellectual disability. The cause of M2DS is a duplication of the MECP2 or Methyl CpG binding protein 2 gene located on the X chromosome (Xq28). The MeCP2 protein plays a pivotal role in regulating brain function. Increased levels of MECP2 protein results in abnormal neural function and impaired immune system. Mutations in the MECP2 gene are also commonly associated with Rett syndrome in females. Advances in genetic testing and more widespread use of Array Comparative Genomic Hybridization has led to increased diagnosis of MECP2 duplication syndrome. It is thought to represent ~1% of X-linked male mental disability cases.
The rare cases that have been examined are often within families, or the people that have cases of micro syndrome have a mutation in their genes.
It can be associated with "RAB3GAP".