Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
According to the hygiene hypothesis, when children are brought up exposed to allergens in the environment at a young age, their immune system is more likely to tolerate them, while children brought up in a modern "sanitary" environment are less likely to be exposed to those allergens at a young age, and, when they are finally exposed, develop allergies. There is some support for this hypothesis with respect to AD. Those exposed to dogs while growing up have a lower risk of atopic dermatitis. There is also support from epidemiological studies for a protective role for helminths against AD. Likewise children with poor hygiene are at a lower risk for developing AD, as are children who drink unpasteurised milk.
In adults, the prevalence of IgE sensitization to allergens from house dust mite and cat, but not grass, seem to decrease over time as people age. However, the biological reasons for these changes are not fully understood.
Irritant contact dermatitis (ICD) can be divided into forms caused by chemical irritants, and those caused by physical irritants. Common chemical irritants implicated include: solvents (alcohol, xylene, turpentine, esters, acetone, ketones, and others); metalworking fluids (neat oils, water-based metalworking fluids with surfactants); latex; kerosene; ethylene oxide; surfactants in topical medications and cosmetics (sodium lauryl sulfate); and alkalis (drain cleaners, strong soap with lye residues).
Physical irritant contact dermatitis may most commonly be caused by low humidity from air conditioning. Also, many plants directly irritate the skin.
Risk factors for allergy can be placed in two general categories, namely host and environmental factors. Host factors include heredity, sex, race, and age, with heredity being by far the most significant. However, there have been recent increases in the incidence of allergic disorders that cannot be explained by genetic factors alone. Four major environmental candidates are alterations in exposure to infectious diseases during early childhood, environmental pollution, allergen levels, and dietary changes.
Allergic diseases are strongly familial: identical twins are likely to have the same allergic diseases about 70% of the time; the same allergy occurs about 40% of the time in non-identical twins. Allergic parents are more likely to have allergic children, and those children's allergies are likely to be more severe than those in children of non-allergic parents. Some allergies, however, are not consistent along genealogies; parents who are allergic to peanuts may have children who are allergic to ragweed. It seems that the likelihood of developing allergies is inherited and related to an irregularity in the immune system, but the specific allergen is not.
The risk of allergic sensitization and the development of allergies varies with age, with young children most at risk. Several studies have shown that IgE levels are highest in childhood and fall rapidly between the ages of 10 and 30 years. The peak prevalence of hay fever is highest in children and young adults and the incidence of asthma is highest in children under 10.
Overall, boys have a higher risk of developing allergies than girls, although for some diseases, namely asthma in young adults, females are more likely to be affected. These differences between the sexes tend to decrease in adulthood.
Ethnicity may play a role in some allergies; however, racial factors have been difficult to separate from environmental influences and changes due to migration. It has been suggested that different genetic loci are responsible for asthma, to be specific, in people of European, Hispanic, Asian, and African origins.
Common allergens implicated include the following:
- Nickel (nickel sulfate hexahydrate) – has been recognized as a significant cause of allergy. This metal is frequently encountered in stainless steel cookware, jewelry and clasps or buttons on clothing. Current estimates gauge are that roughly 2.5 million US adults and 250,000 children suffer from nickel allergy, which costs an estimated $5.7 billion per year for treatment of symptoms. A significant portion of nickel allergy is preventable.
- Gold (gold sodium thiosulfate) – precious metal often found in jewelry and dental materials
- Balsam of Peru (Myroxylon pereirae) – used in food and drink for flavoring, in perfumes and toiletries for fragrance, and in medicine and pharmaceutical items for healing properties; derived from tree resin. It may also be a component of artificial vanilla and/or cinnamon flavorings.
- Chromium – used in the tanning of leather. Also a component of uncured cement/mortar, facial cosmetics and some bar soaps.
- Urushiol – oily coating from plants of Toxicodendron genus – poison ivy, poison oak, and poison sumac. Also found in mango plants and cashews.
- Sap from certain species of mangrove and agave
- Thiomersal – mercury compound used in local antiseptics and in vaccines
- Neomycin – topical antibiotic common in first aid creams and ointments, cosmetics, deodorant, soap, and pet food. Found by itself, or in Neosporin or Triple Antibiotic
- Fragrance mix – group of the eight most common fragrance allergens found in foods, cosmetic products, insecticides, antiseptics, soaps, perfumes, and dental products
- Formaldehyde – preservative with multiple uses, "e.g.", in paper products, paints, medications, household cleaners, cosmetic products, and fabric finishes. Often released into products by the use of formaldehyde releasers such as imidazolidinyl urea, diazolidinyl urea, Quaternium-15, DMDM Hydantoin, and 2-bromo-2-nitropropane-1,3-diol.
- Cobalt chloride – metal found in medical products; hair dye; antiperspirant; metal-plated objects such as snaps, buttons or tools; and in cobalt blue pigment
- Bacitracin – topical antibiotic found by itself, or as Polysporin or Triple Antibiotic
- Quaternium-15 – preservative in cosmetic products (self-tanners, shampoo, nail polish, sunscreen) and in industrial products (polishes, paints and waxes).
- Colophony (Rosin) – rosin, sap or sawdust typically from spruce or fir trees
- Topical steroid – "see" steroid allergy
- Photographic developers, especially those containing metol
- Topical anesthetics – such as pramoxine or diphenhydramine, after prolonged use
- Isothiazolinones – preservatives used in many personal care, household, and commercial products.
- Mercaptobenzothiazole – in rubber products, notably shoes, gloves, and car tires.
- Soluble salts of platinum – "see" platinosis
In a small percentage of cases, atopic dermatitis is caused by sensitization to foods. Also, exposure to allergens, either from food or the environment, can exacerbate existing atopic dermatitis. Exposure to dust mites, for example, is believed to contribute to one's risk of developing AD. A diet high in fruits seems to have a protective effect against AD, whereas the opposite seems true for fast foods. Atopic dermatitis sometimes appears to be associated with celiac disease and non-celiac gluten sensitivity, and the improvement with a gluten-free diet indicates that gluten is a causative agent in these cases.
Atopic reactions are caused by localized hypersensitivity reaction to an allergen. Atopy appears to show a strong hereditary component. One study concludes that the risk of developing atopic dermatitis (3%) or atopy in general (7%) "increases by a factor of two with each first-degree family member already suffering from atopy". As well, maternal stress and perinatal programming is increasingly understood as a root cause of atopy, finding that "...trauma may be a particularly robust potentiator of the cascade of biological events that increase vulnerability to atopy and may help explain the increased risk found in low-income urban populations.”
Environmental factors are also thought to play a role in the development of atopy, and the 'hygiene hypothesis' is one of the models that may explain the steep rise in the incidence of atopic diseases, though this hypothesis is incomplete and in some cases, contradictory to findings. This hypothesis proposes that excess 'cleanliness' in an infant's or child's environment can lead to a decline in the number of infectious stimuli that are necessary for the proper development of the immune system. The decrease in exposure to infectious stimuli may result in an imbalance between the infectious-response ("protective") elements and the allergic-response ("false alarm") elements within the immune system.
Some studies also suggest that the maternal diet during pregnancy may be a causal factor in atopic diseases (including asthma) in offspring, suggesting that consumption of antioxidants, certain lipids, and/or a Mediterranean diet may help to prevent atopic diseases.
The multicenter PARSIFAL study in 2006, involving 6630 children age 5 to 13 in 5 European countries, suggested that reduced use of antibiotics and antipyretics is associated with a reduced risk of allergic disease in children.
Common causes of allergic contact dermatitis include: nickel allergy, 14K or 18K gold, Balsam of Peru ("Myroxylon pereirae"), and chromium. In the Americas they include the oily coating from plants of the "Toxicodendron" genus: poison ivy, poison oak, and poison sumac. Millions of cases occur each year in North America alone. The alkyl resorcinols in "Grevillea banksii" and "Grevillea" 'Robyn Gordon' are responsible for contact dermatitis. Bilobol, another alkyl resorcinol found in "Ginkgo biloba" fruits, is also a strong skin irritant.
Common causes of irritant contact dermatitis include solvents, metalworking fluids, latex, kerosene, ethylene oxide, paper, especially papers coated with chemicals and printing inks, certain foods and drink, food flavorings and spices, perfume, surfactants in topical medications and cosmetics, alkalis, low humidity from air conditioning, and many plants. Other common causes of irritant contact dermatitis are harsh, alkaline soaps, detergents, and cleaning products.
There are three types of contact dermatitis: irritant contact dermatitis; allergic contact dermatitis; and photocontact dermatitis. Photocontact dermatitis is divided into two categories: phototoxic and photoallergic.
Nickel allergy results in a skin response (rash) after the skin comes in direct and sustained contact with any item which releases a large amount of free nickel from its surface. The skin reaction can occur at the site of contact, or sometimes spread beyond to the rest of the body. Cutaneous exposure can cause localized erythematous, pruritic, vesicular, and scaly patches. Ingestion of nickel may cause a systemic reaction, that will affect a larger skin surface. Examples of systemic reactions can include hand dermatitis, baboon syndrome, or generalized eczematous reactions.
Within the workplace, individuals may be exposed to significant amounts of nickel, airborne from the combustion of fossil fuels, or from contact with tools that are nickel-plated. Historically, workplaces where prolonged contact with soluble nickel has been high, have shown high risks for allergic contact nickel dermatitis. For example, nickel dermatitis was common in the past among nickel platers. Due to improved industrial and personal hygiene practices, however, over the past several decades, reports of nickel sensitivity in workplaces, such as the electroplating industry, have been sparse. In the workplace, exposure reduction includes personal protection equipment and other risk management measures.
The most common food allergies in adults are shellfish and nuts. The most common food allergies in children are shellfish, nuts, eggs, wheat, and soy. One study showed Balsam of Peru, which is in many processed foods, to be the most common cause of immediate contact urticaria. A less common cause is exposure to certain bacteria, such as "Streptococcus" species or possibly "Helicobacter pylori".
Estimates of latex sensitivity in the general population range from 0.8% to 8.2%.
The hygiene hypothesis postulates that the cause of asthma, eczema, and other allergic diseases is an unusually clean environment. It is supported by epidemiologic studies for asthma. The hypothesis states that exposure to bacteria and other immune system modulators is important during development, and missing out on this exposure increases risk for asthma and allergy.
While it has been suggested that eczema may sometimes be an allergic reaction to the excrement from house dust mites, with up to 5% of people showing antibodies to the mites, the overall role this plays awaits further corroboration.
Drugs that have caused allergic reactions evidenced as hives include codeine, dextroamphetamine, aspirin, ibuprofen, penicillin, clotrimazole, trichazole, sulfonamides, anticonvulsants, cefaclor, piracetam, vaccines, and antidiabetic drugs. The antidiabetic sulphonylurea glimepiride, in particular, has been documented to induce allergic reactions manifesting as hives. Drug-induced hives has been known to have an effect on severe cardiorespiratory failure.
Allergic contact dermatitis (ACD) is a form of contact dermatitis that is the manifestation of an allergic response caused by contact with a substance; the other type being irritant contact dermatitis (ICD).
Although less common than ICD, ACD is accepted to be the most prevalent form of immunotoxicity found in humans. By its allergic nature, this form of contact dermatitis is a hypersensitive reaction that is atypical within the population. The mechanisms by which these reactions occur are complex, with many levels of fine control. Their immunology centres on the interaction of immunoregulatory cytokines and discrete subpopulations of T lymphocytes.
Natural rubber latex can also cause irritant contact dermatitis, a less severe form of reaction that does not involve the immune system. Contact dermatitis causes dry, itchy, irritated areas on the skin, most often on the hands. Latex-glove induced dermatitis increases the chance of hospital-acquired infections, including blood-borne infections, being transmitted.
Urushiol-induced contact dermatitis is caused by contact with a plant or any other object containing urushiol oil. The oil adheres to almost anything with which it comes in contact, such as towels, blankets, clothing, and landscaping tools. Clothing or other materials that touch the plant and then, before being washed, touch the skin are common causes of exposure.
For people who have never been exposed or are not yet allergic to urushiol, it may take 10 to 21 days for a reaction to occur the first time. Once allergic to urushiol, however, most people break out 48 to 72 hours after contact with the oil. Typically, individuals have been exposed at least once, if not several times, before they develop a rash. The rash typically persists one to two weeks, but in some cases may last up to five weeks.
Urushiol is primarily found in the spaces between cells beneath the outer skin of the plant, so the effects are less severe if the plant tissue remains undamaged on contact. Once the oil and resin are thoroughly washed from the skin, the rash is not contagious. Urushiol does not always spread once it has bonded with the skin, and cannot be transferred once the urushiol has been washed away.
Although simple skin exposure is most common, ingestion of urushiol can lead to serious, systemic reactions. Burning plant material is commonly said to create urushiol-laden smoke that causes a systemic reaction, as well as a rash in the throat and eyes. Firefighters often get rashes and eye inflammation from smoke-related contact. A high-temperature bonfire may incinerate urushiol before it can cause harm, while a smoldering fire may vaporize the volatile oil and spread it as white smoke. However, some sources dispute the danger of burning urushiol-containing plant material.
There is no good evidence that a mother's diet during pregnancy, the formula used, or breastfeeding changes the risk. There is tentative evidence that probiotics in infancy may reduce rates but it is insufficient to recommend its use.
People with eczema should not get the smallpox vaccination due to risk of developing eczema vaccinatum, a potentially severe and sometimes fatal complication.
Perfume intolerance or perfume allergy is a condition wherein people exhibit sensitivity or allergic reactions to ingredients in some perfumes and some other fragrances.
The majority of children outgrow egg allergy. One review reported that 70% of children will outgrow this allergy by 16 years. In subsequently published longitudinal studies, one reported that for 140 infants who had challenge-confirmed egg allergy, 44% had resolved by two years. A second reported that for 203 infants with confirmed IgE-mediated egg allergy, 45% resolved by two years of age, 66% by four years, and 71% by six years. Children will be able to tolerate eggs as an ingredient in baked goods and well-cooked eggs sooner than under-cooked eggs. Resolution was more likely if baseline serum IgE was lower, and if the baseline symptoms did not include anaphylaxis.
Milk allergy typically presents in the first year of life. The majority of children outgrow milk allergy by the age of ten years. One large clinical trial reported resolutions of 19% by age 4 years, 42% by age 8 years, 64% by age 12 years, and 79% by 16 years. Children are be able to tolerate milk as an ingredient in baked goods relative to liquid milk. Resolution was more likely if baseline serum IgE was lower, or if IgE-mediated allergy was absent so that all that was present was cell-mediated, non-IgE allergy.
People with confirmed cow's milk allergy may also demonstrate an allergic response to beef, moreso to rare beef versus well-cooked beef. The offending protein appears to be bovine serum albumin. This is not the same beef allergy that is seen primarily in the southeastern United States, triggered by being bitten by a Lone Star tick.
Milk allergy has consequences. In a U.S. government diet and health surveys conducted in 2007-2010, 6,189 children ages 2-17 years were assessed. For those classified as cow's milk allergic at the time of the survey, mean weight, height and body-mass index were significantly lower than their non-allergic peers. This was not true for children with other food allergies. Diet assessment showed a significant 23% reduction of calcium intake and near-significant trends for lower vitamin D and total calorie intake.
Symptoms depend on each person's allergies and each perfume's or fragrance's ingredients. Symptoms may include allergic contact dermatitis, asthma attacks, headaches, and others. The most common allergic reactions to perfume or fragrances added to products is contact dermatitis, though other symptoms may occur, including allergic conjunctivitis.
The diagnosis of the causal allergen is made by patch testing with a mixture of fragrance ingredients, the fragrance mix. This gives a positive patch-test reaction in about 10% of tested patients with eczema, and the most recent estimates show that 1.7–4.1% of the general population are sensitized to ingredients of the fragrance mix.
Two studies show that inhalant-like allergies and sensitivity/intolerances are experienced by a subset of the US population, in the form of asthma and chemical sensitivities. Results aggregated from both surveys found that 30.5% of the general population reported scented products on others irritating, 19% reported adverse health effects from air fresheners, and 10.9% reported irritation by scented laundry products vented outside.
Household products, such as soaps and detergents, perfume products, cosmetics, and other consumer goods, are estimated to use 2,500 different fragrance ingredients. Of those, approximately 100 different substances are known to elicit responses in at least some individuals. An estimated 1.7–4.1% of the general population shows a contact allergic response to a mix of common perfume ingredients.
The diagnosis is made by patch testing with a mixture of fragrance ingredients, the fragrance mix. This gives a positive patch-test reaction in about 10% of tested patients with eczema, and the most recent estimates show that 1.7–4.1% of the general population are sensitized to ingredients of the fragrance mix.
Although products can be labeled "fragrance-free", many still contain lesser-known fragrance chemicals that consumers may not recognize.
Cinnamaldehyde (cinnamic aldehyde) is a common fragrance allergen.
A rarely cited double-blind study in 1982 reported that a course of oral urushiol usually hyposensitized subjects.
Chemical irritant contact dermatitis is either acute or chronic, which is usually associated with strong and weak irritants respectively. The following definition is provided by Mathias and Maibach (1978): The mechanism of action varies. Detergents, surfactants, extremes of pH, and organic solvents all directly affecting the barrier properties of the epidermis. These effects include removing fat emulsion, defatting of dermal lipids, inflicting cellular damage on the epithelium, and increasing the transepidermal water loss by damaging the horny layer water-binding mechanisms and damaging the DNA, which causes the layer to thin. Concentrated irritants have an acute effect, but this is not as common as the accumulative, chronic effect of irritants whose deleterious effects build up with subsequent doses (ESCD 2006).
Chemical irritants are often strong alkalis as found in drain cleaners and soap with lye residues. Many other chemical compounds can also cause contact dermatitiis.