Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The overall incidence is ~1/42,000 to 1/50,000 people. Types I and II are the most common types of the syndrome, whereas types III and IV are rare. Type 4 is also known as Waardenburg‐Shah syndrome (association of Waardenburg syndrome with Hirschsprung disease).
Type 4 is rare with only 48 cases reported up to 2002.
About 1 in 30 students in schools for the deaf have Waardenburg syndrome. All races and sexes are affected equally. The highly variable presentation of the syndrome makes it difficult to arrive at precise figures for its prevalence.
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Ayazi syndrome's inheritance pattern is described as x-linked recessive. Genes known to be deleted are CHM and POU3F4, both located on the Xq21 locus.
Ayazi syndrome (or Chromosome 21 Xq21 deletion syndrome) is a syndrome characterized by choroideremia, congenital deafness and obesity.
If the Hirschsprung's disease is treated in time, ABCD sufferers live otherwise healthy lives. If it is not found soon enough, death often occurs in infancy. For those suffering hearing loss, it is generally regressive and the damage to hearing increases over time. Digestive problems from the colostomy and reattachment may exist, but most cases can be treated with laxatives. The only other debilitating symptom is hearing loss, which is usually degenerative and can only be treated with surgery or hearing aids.
Tietz syndrome, also called Tietz albinism-deafness syndrome or albinism and deafness of Tietz, is an autosomal dominant congenital disorder characterized by deafness and leucism. It is caused by a mutation in the microphthalmia-associated transcription factor (MITF) gene. Tietz syndrome was first described in 1963 by Walter Tietz (1927–2003) a German Physician working in California.
One case of Cohen Syndrome, in a Palestinian boy from Tul-Karem, was reported in the Israeli monthly Kol Israel BeAsakim (in Hebrew) in the December 2007 issue. Over the past several years there have been approximately 50 new cases worldwide. There are population groups with this condition in Australia, the UK and the US. It still seems to go undiagnosed leaving the number of cases less than 500.
The frequency is unknown, but the disease is considered to be very rare.
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
One family of 68 individuals over 5 generations was studied and the prevalence of disease among the family members suggests that it is indicative of dominant inheritance that is not sexually linked. This is supported by the fact that the disease failed to skip generations even in the absence of intermarriages and that disease incidence was independent of sex. The current findings suggest that the cause of the disease could be narrowed down to one enzymatic defect that is involved in the development of neuroectodermal tissue, however the exact molecular mechanisms are currently unknown. The other symptoms that arise such as bone defects and diabetes may be secondary to this enzymatic defect.
Cohen syndrome (also known as Pepper syndrome or Cervenka syndrome, named after Michael Cohen, William Pepper and Jaroslav Cervenka, who researched the illness) is a genetic disorder.
Mohr–Tranebjærg syndrome (MTS) is a rare X-liked recessive syndrome also known as deafness–dystonia syndrome and caused by mutation in the TIMM8A gene. It was first described in 1960. The severity of the symptoms may vary, but they progress usually to severe deafness and dystonia and sometimes are accompanied by cortical deterioration of vision and mental deterioration.
Researchers in the past 20 years have determined that a gene mutation, specifically a homozygous mutation in the EDNRB gene, is the cause of ABCD syndrome. The advancement of technology led to new DNA material testing methods and this discovery changed the view of ABCD syndrome completely. A homozygous mutation means that there was an identical mutation on both the maternal and paternal genes. The identifying clinical report stated the test was done by scanning the Kurdish family for mutations in the EDNRB gene and the EDN3 gene by using a test called denaturing gradient gel electrophoresis. The electrophoresis test takes advantage of electrical currents and differences in melting points of fragments of DNA or RNA to move them based on their molecular weight; the differences in mobility of the fragments then can be analyzed to determine different sequences and to detect individual alleles. Different nucleotides in DNA are codes for certain proteins, which are formed by different patterns of the base pairs adenine, thymine, guanine, and cytosine. The combination of adenine and thymine and guanine and cytosine align on the double strands of DNA. The test results found "an aberrant DGGE pattern of exon 3 of the EDNRB gene. The mutation was determined to be a homozygous C to T base pair transition at the amino acid level, causing a premature stop in gene translation." This specialized testing enables geneticists to recognize the gene mutation that is the cause of ABCD syndrome.
New findings introduced an important break in the beliefs about ABCD syndrome because the endothelin B gene is a gene involved in Shah-Waardenburg syndrome. The endothelin receptor B produces Waardenburg syndrome type IV. Researchers began discussing the possibility that ABCD syndrome was in fact not a syndrome; rather it was a type of another syndrome known as Waardenburg. Discovering that the same gene is involved in ABCD and Waardenburg syndrome is important because researchers can now look further into ways to fix this crucial gene.
The exact pathophysiological mechanism of Flynn–Aird syndrome is unknown. However, several theories are in place with regards to the nature of this disease including the presence of a genetically defective enzyme involving a neuroectodermal tissue constituent. This explanation provides evidence for the late onset of the condition, the intricate findings, the varied nature of the disorder, as well as the genetic incidence. In addition, some aspects of the condition may be linked to a suppressing (S) gene due to the fact that only a small amount of stigmata appeared while the defects were still transmitted in the family studied. A suppressing gene down regulates the phenotypic expression of another gene, especially of a mutant gene. Other abnormalities may be due to endocrine system diseases.
Fountain syndrome is an autosomal recessive congenital disorder characterized by mental retardation, deafness, skeletal abnormalities and a coarse face with full lips. The abnormal swelling of the cheeks and lips are due to the excessive accumulation of body fluids under the skin. The deafness is due to malformation of the cochlea structure within the inner ear.
Unfortunately, there is not one specific treatment option that can rid a person of this syndrome. However, there are many routes one can take to make living with this disease a lot easier. For example, there are many treatment programs that doctors can specialize for patients and their needs. Meeting with a doctor is very crucial and these specializations can be very useful. Also, one can seek help from pediatricians, EENT doctors, audiologists, and orthopedists. Brace fittings, hearing aids, and physical therapy can also be pushed by one's doctor, so that a patient can live normally. Additionally, anticonvulsant drugs can be used to stop seizures.
Tietz syndrome is characterized by profound hearing loss from birth, white hair and pale skin (hair color may darken over time to blond or red).
The hearing loss is caused by abnormalities of the inner ear (sensorineural hearing loss) and is present from birth. Individuals with Tietz syndrome often have skin and hair color that is lighter than those of other family members.
Tietz syndrome also affects the eyes. The iris in affected individuals is blue, and specialized cells in the eye called retinal pigment epithelial cells lack their normal pigment. The changes to these cells are generally detectable only by an eye examination; it is unclear whether the changes affect vision.
Bangstad syndrome is a severe, inherited congenital disorder associated with abnormalities of the cell membrane.
It was characterized in 1989.
Vici syndrome, also called immunodeficiency with cleft lip/palate, cataract, hypopigmentation and absent corpus callosum, is a rare autosomal recessive congenital disorder characterized by albinism, agenesis of the corpus callosum, cataracts, cardiomyopathy, severe psychomotor retardation, seizures, immunodeficiency, and recurrent severe infections. To date about 50 cases have been reported.
Albinism–deafness syndrome (also known as "Woolf syndrome" and "Ziprkowski–Margolis syndrome") is a condition characterized by congenital neural deafness and a severe or extreme piebald-like phenotype with extensive areas of hypopigmentation.
A locus at Xq26.3-q27.I has been suggested.
It has been suggested that it is a form of Waardenburg syndrome type II.
Presenting at birth, features of the disorder include moderately severe IUGR, microcephaly, craniosynostosis, moderately severe post uterine growth retardation, deafness, deep set eyes, cryptorchidism, truncal obesity and acanthosis nigricans, small teeth, prognathism, dislocated radial heads without generalized skeletal dysplasia, however, tall vertebrae, moderate mental retardation, hypothyroidism, insulin resistance, hypoparathyroidism.
Vici syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The hypothesis of autosomal recessive inheritance of Vici syndrome was strengthened in 2002 with the clinical description of two new cases, one brother and one sister, by Chiyonobu et al.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
Usher syndrome, also known as Hallgren syndrome, Usher-Hallgren syndrome, retinitis pigmentosa-dysacusis syndrome, or dystrophia retinae dysacusis syndrome, is an extremely rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is a leading cause of deafblindness and is at present incurable.
Usher syndrome is classed into three subtypes according to onset and severity of symptoms. All three subtypes are caused by mutations in genes involved in the function of the inner ear and retina. These mutations are inherited in an autosomal recessive pattern.